经济学统计学一元线性回归
- 格式:pptx
- 大小:9.56 MB
- 文档页数:94
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
一元线性回归分析的原理
一元线性回归分析是一种用于研究变量之间相互关系的统计分析方法。
它旨在
在一组数据中,以一个线性方程的式子去拟合变量之间的关系。
借此,分析一个独立变量(即自变量)和一个取决变量(即因变量)之间的关系,求出最合适的回归系数。
一元线性回归分析可以用来发现和描述变量之间的复杂方程式,用来估计参数,以及构建预测模型。
具体而言,一元线性回归分析指的是自变量和因变量之间有线性关系的回归分析。
也就是说,自变量和因变量均遵从一元线性方程,也就是y=βx+α,其中y
为因变量,x为自变量,β为系数,α为常数。
通过一元线性回归分析可以精确
的定义出变量之间的关系,从而可以得出最佳的回归系数和常数,并估计每个参数。
一元线性回归分析用于研究很多方面,例如决策科学、经济学和政治学等领域。
例如,在政治学研究中,可以使用一元线性回归分析来分析政府的软性政策是否能够促进社会发展,以及社会福利是否会影响民众的投票行为。
在经济学研究中,则可以使用一元线性回归分析来检验价格是否会影响消费水平,或检验工资水平是否会影响经济增长率等。
总结而言,一元线性回归分析是一种有效的研究变量之间关系的统计分析方法,精确地检验独立变量和取决变量之间的关系,从而求得最合适的回归系数和常数,并用该回归方程式构建预测模型,为决策提供参考。
第二章一元线性回归模型计量经济学在对经济现象建立经济计量模型时,大量地运用了回归分析这一统计技术,本章和下一章将通过一元线性回归模型、多元线性回归模型来介绍回归分析的基本思想。
第一节回归分析的几个基本问题回归分析是经济计量学的主要工具,下面我们将要讨论这一工具的性质。
一、回归分析的性质(一)回归释义回归一词最先由F •加尔顿(Francis Galt on )提出。
加尔顿发现,虽然有一个趋势,父母高,儿女也高:父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归” 到全体人口的平均身高。
或者说,尽管父母双亲都异常高或异常矮,而儿女的身高则有走向人口总体平均身高的趋势(普遍回归规律)。
加尔顿的这一结论被他的朋友K •皮尔逊(Karl pearson)证实。
皮尔逊收集了一些家庭出身1000多名成员的身高记录,发现对于一个父亲高的群体,儿辈的平均身高低于他们父辈的身高,而对于一个父亲矮的群体,儿辈的平均身高则高于其父辈的身高。
这样就把高的和矮的儿辈一同“回归”到所有男子的平均身高,用加尔顿的话说,这是“回归到中等” 。
回归分析是用来研究一个变量(被解释变量Explained variable或因变量Dependent variable 与另一个或多个变量(解释变量Explanatory variable或自变量Independent variable之间的关系。
其用意在于通过后者(在重复抽样中)的已知或设定值去估计或预测前者的(总体)均值。
下面通过几个简单的例子,介绍一下回归的基本概念。
例子1.加尔顿的普遍回归规律。
加尔顿的兴趣在于发现为什么人口的身高分布有一种稳定性,我们关心的是,在给定父辈身高的条件下找出儿辈平均身高的变化。
也就是一旦知道了父辈的身高,怎样预测儿辈的平均身高。
为了弄清楚这一点,用图 1.1 表示如下图 1.1 对应于给定父亲身高的儿子身高的假想分布图 1.1 展示了对应于设定的父亲身高, 儿子在一个假想人口总体中的身高分布, 我们不难发现,对应于任一给定的父亲身高, 相对应都有着儿子身高的一个分布范围,同时随着父亲身高的增加,儿子的平均身高也增加,为了清楚起见,在1.1散点图中勾画了一条通过这些散点的直线,以表明儿子的平均身高是怎样随着父亲的身高增加而增加的。
§2.4 一元线性回归的模型检验一、经济意义检验。
二、在一元回归模型的统计检验主要包括如下几种检验1、拟合优度检验(R2检验;2、自变量显著性检验(t检验;3、残差标准差检验(SE检验。
•主要检验模型参数的符号、大小和变量之间的相关关系是否与经济理论和实际经验相符合。
一、经济意义检验i•二、统计检验•回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。
•尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。
那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。
1、拟合优度检验拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。
度量拟合优度的指标:判定系数(可决系数R2(1、总离差平方和的分解已知由一组样本观测值(X i ,Y i ,通过估计得到如下样本回归直线ii X Y 10ˆˆˆββ+=i i i i i i i y e Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=总离差平方和的分解ii X Y 10ˆˆˆββ+=ˆ(ˆY Y y i i -=i i i i i i i ye Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=Y 的i 个观测值与样本均值的离差由回归直线解释的部分回归直线不能解释的部分离差分解为两部分之和总离差平方和的分解公式:TSS=RSS+ESS,TSS 总离差平方和,ESS 为回归平方和,RSS 为残差平方和.((((((((0ˆˆˆ,0.0ˆˆ(ˆ(ˆˆ(2ˆˆ: 1022222222ˆˆˆˆˆˆ=+===-=-=--+=+=-+-=-+--+-=-+-=-=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ii i i i i ii i i i i i i i i i i i i i i i i i i i i i X e e Y e e e Y Y e Y Y e Y Y ESS RSS y e Y Y Y Y TSS Y Y Y YY Y Y YY Y Y Y Y Y Y Y ββ而因为证明TSS=ESS+RSSY的观测值围绕其均值的总离差(total variation可分解为两部分:一部分来自回归线(ESS,另一部分则来自随机部分(RSS。