结构动力学习题答案(刘晶波)
- 格式:pdf
- 大小:2.10 MB
- 文档页数:7
同济⼤学2003-2016年结构动⼒学考博试题分解同济⼤学2008年结构动⼒学考博试题同济⼤学2009年结构动⼒学考博试题共5道⼤题1:什么是结构⾃由度;2:有两道题都是关于两⾃由度的计算题:都是采⽤振型叠加法;3:设计⼀个实验⽅案,测定⼀种结构材料的阻尼⽐4:证明瑞利--理兹法计算的结构基频⽐精确解⼤同济⼤学2010年博⼠⽣⼊学考试结构动⼒学⼀、简答题⼀.结构⾃由度⼆.达朗贝尔原理三.⽆阻尼单⾃由度系统在初始条件下做⾃由振动,试写出描述该系统振动的位移解。
设初试位移为u0,初始速度为v0。
四.判断结构动⼒分析中直接数值积分的稳定条件。
⼆、计算题1.计算系统的运动⽅程,并求解⾃振频率。
图 12.图2 中为均质杆,计算:(1)通过均质杆轴向振动⽅程建⽴杆的特征⽅程;(2)应⽤Rayleigh 商原理,采⽤假定振型法求解杆的振动基频。
图 21.介绍获得阻尼系数的两种试验⽅法,写明步骤及公⽰。
2.多⾃由度系统的全部振型为[ ][ d c],已知[]T[M][ ][ ]I (单位阵),[ ] [F c K] 1 [ d][d] [ 1 d]T 。
其中,[ d ]证明:对应[c]的结构剩余柔度矩阵为为保留振型;[c]为剩余振型;[ d ]为对⾓阵,其对⾓元素为系统保留振型所对应各阶特征值。
3.P 点的简谐位移激励Z( )t Z0 cos(t) ,图中m,c,k,Z0,ω均为已知数,求:1.⽤u t( )推导系统的运动⽅程及固有频率和阻尼⽐;2.⽤W t( )Z t( )u t( )推导系统的运动⽅程。
图 36.两层框架结构如图4 所⽰,已知m1=m2=1kg,K1=2000,K2=4000,ω=50rad/s,阻尼都为0.05。
1.求所有振型及⾃振频率;2.求系统Rayleigh 阻尼;3.⼴义质量、⼴义刚度、⼴义阻尼;4.⽤振型叠加法求稳态响应。
图 41. 如图 5,按集中质量建⽴单元质量矩阵。
图 52. 写出等截⾯欧拉梁弯曲⾃由振动⽅程。
结构动力学习题参考答案2.3一根刚梁AB ,用力在弹簧BC 上去激励它,其C 点的运动规定为Z (t ),如图P2.3. 按B 点的垂直运动u 来确定系统的运动方程,假定运动是微小的。
解:以在重力作用下的平衡位置作为基准点,则方程建立时不考虑重力。
根据达朗贝尔原理,通过对A 点取矩建立平衡方程,刚体上作用有弹簧弹力1s f ,2s f ,以及阻尼力D f ,惯性力2M 。
B 点的垂直位移是u ,则有几何关系知2/L 处的位移为2/u 。
根据位移图和受力图可得:02221=⨯-⨯+⨯+L f Lf L f M s D s I 其中.22221....221)(2123131uc f u z k f u k u R f umL L u mL M D s s I =-==⨯=== 代入○1式得: 0)(L 4141ML 3121...=--++L u z k u k u cL u 合并化简得:)(12)123(3M 4221...t Z k u k k u c u =+++2.5 系统如图P2.5 , 确定按下形式的运动方程:)(...t P ku u c u m u =++。
其中u 为E 点的垂直运动。
假定薄刚杆AE 的质量为M,其转动很小。
解:根据牛顿定律,运动几何关系,对B 点取矩得L u L m mL L u k L u c L L t f p 43)4(1214343854)(..22.0⨯⎥⎦⎤⎢⎣⎡+=⨯⨯-⨯-⨯⨯化简合并得:)()()(845.,3,3,M 7)(845337......t P ku u c u m t P L t f P K k C c m L t f P ku u c u M u u O O =++=====++得令2.13 一根均匀杆,图P2.13 其单位体积质量密度ρ,并具有顶部质量M ,应用假定法L x x =()ψ来推导该系统轴向自由振动的运动方程。
假定=AE 常数。
《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
第三章 多自由度系统3.1试求图3-10所示系统在平衡位置附近作微振动的振动方程。
图3-10解:〔1〕系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; 〔2〕系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K x m x K x K x x K x x K xm x x K x K xm ---=------=---= 整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m 〔1〕 〔3〕系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程〔1〕得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω〔2〕 〔4〕系统频率方程系统特征方程〔2〕有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程〔3〕得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω 〔4〕 〔5〕系统固有振型 将系统固有频率代入系统特征方程〔2〕得系统固有振型, 即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ 〔5〕 〔6〕系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x 〔6〕在方程〔6〕中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。
MIDAS-时程荷载工况中几个选项的说明动力方程式如下:在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。
另外,正如哲学家所言:运动是绝对的,静止是相对的。
静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。
0.几个概念自由振动: 指动力方程中P(t)=0的情况。
P(t)不为零时的振动为强迫振动。
无阻尼振动: 指[C]=0的情况。
无阻尼自由振动: 指[C]=0且P(t)=0的情况。
无阻尼自由振动方程就是特征值分析方程。
简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。
非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。
任意荷载: P(t)为随机荷载(无规律),如地震作用。
随机荷载作用下的振动为随机振动。
冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。
1.关于分析类型选项目前有线性和非线性两个选项。
该选项将直接影响分析过程中结构刚度矩阵的构成。
非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。
当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。
只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。
如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。
2.关于分析方法选项目前有振型叠加法、直接积分法、静力法三个选项。
这三个选项是指解动力方程的方法。
关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。