结构动力学9
- 格式:pdf
- 大小:548.67 KB
- 文档页数:58
结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。
它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。
结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。
结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。
这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。
因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。
结构动力学的理论基础是力学、振动学和数学分析等。
力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。
在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。
在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。
质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。
通过对这些参数的建模,可以得到结构的动力学方程。
结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。
通过对这两方面的研究,可以得到结构的振动特性和响应情况。
总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。
同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。
结构动力学
结构动力学是一门应用物理和数学原理研究动态可塑结构行为的
工程学科。
它不仅涉及到结构力学中的结构响应,而且还涉及到动力
学中的系统性研究。
目标是了解和计算结构受外力作用时的运动行为,预测出结构所受冲击能量,强度和变形情况。
例如,对于一艘平衡船,结构动力学可以帮助我们发现哪些部件会受到激烈的冲击力,以及船
体什么时候会趋向平衡。
为了理解结构动力学,我们需要了解力学。
力学是一种使用物理
学原理的工程学科,主要关注作用在物体上的各种力和它们之间的作用。
例如,重力和导热力是两个典型的力,它们混斗在一起影响物体
的运动。
结构动力学是将力学概念应用于特定可塑结构上,用来分析结构
随时间改变的行为特性。
其中,最常见的类型包括结构稳定性和可塑性,它们可以被应用于从最小的桥梁到最大的建筑结构。
在更深层次上,结构动力学考察不同刚度结构之间的行为,并且考察这些行为如
何通过各种力学和外力来影响复杂系统。
此外,结构动力学还可以用来检查建筑结构的设计是否正确。
它
可以检查系统中机械强度,稳定性和结构完整性,以免因结构设计不
当而出现过分的变形和破坏。
总之,结构动力学是一门复杂的工程学科,研究的内容涉及到力学,动力学,计算机技术和材料科学等多个领域。
它被广泛用于建筑,船舶,飞机,汽车,桥梁,机器人和其他复杂结构的设计与研究中。
结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
结构动力学 动力特性(天生就有的,爹妈给的,不随外界任何事物改变)自振频率ω:初速度或初位移引起自由振动的圆频率振型:结构按照某自振频率振动的位移形态阻尼:振动过程中的能量耗散(主要由结构内部的特征决定的)动力作用:周期荷载、冲击荷载、随机荷载(地震)动力反应(响应):动内力、动荷载、速度、加速度结构动力学是研究动力反应的规律的学问,一般思路是先研究自由振动(目的是搞清该结构的动力特性)再研究强迫振动(动力特性+动力作用)利用振型分解反应谱法,可以将每个基本振型的参与系数求出来,这样的最大好处是可以将耦联微分方程解耦。
刚度法通式:()()()()mY t cY t kY t F t ++=1、 单自由度无阻尼自由振动(分析自由振动的目的是确定体系的动力特性:周期、自振频率)()()0my t ky t += (()[()]y t my t δ=-) (令k m ω=) 解为:00()cos sin v y t y t t ωωω=+=sin()A t ωϕ+ (22002v A y ω=+,00tan y v ωϕ=) 重要结论:由微分方程的解可以知道,无阻尼振动是一个简谐振动,其周期和自振频率为2T πω=,k mω=周期和自振频率之和自己质量与刚度有关和外界因素无关。
2、单自由度有阻尼自由振动()()()0my t cy t ky t ++= (令=22c c mw mkξ=) 即微分方程为2()2()()0y t wy t w y t ξ++=(实际建筑结构的阻尼比1ξ<)解为000()[sin cos ]t d d dv y y t e t y t ξωξωωωω-+=+=sin()t d Ae t ξωωϕ-+(21d ωωξ=-) 221000000(),d d v y y A y tg v y ξωωϕωξω-+=+=+其中 重要结论:1)由方程的解看出弱阻尼情况下的自由振动是一种衰减振动,阻尼使振幅按指数规律衰减。
机械振动系统,师汉民,华中科技大学出版社cos sin i t e t i t ωωω=+Ch1 单自由度线性系统自由振动1.3 无阻尼自由振动()()0mxt kx t += 解()()22002()cos sin cos cos n n n n nnv v x t x t t x t A t ωωωϕωϕωω=+=++=-振幅和相位由初始条件确定。
确定自然频率的方法: 1、 静变形法:kx mg =,n g xω=2、 能量法:无阻尼弹性振动能量守恒,因此取动能Tmax=势能Vmax 。
1.4 有阻尼自由振动22()()()020n n mx t cx t kx t s s ξωω++=⇒++= ,通解wt Ae通常自然频率可以很容易的通过实验测定,但阻尼比ξ的计算或辨识则比较困难,需要利用自由振动衰减曲线计算。
在间隔1个振动周期T 的自由振动减幅振动曲线上,取两个峰值A1和A2,A1/A2=EXP(ξωn T)Ch2 单自由度线性系统的受迫振动 2.1 谐波激励()()()cos cos mxt cx t kx t F t kA t ωω++= →22()2()()cos n n n x t x t x t A t ξωωωω++= ,设通解cos()X t ωϕ-,ϕ表响应对激励的滞后通解X1为:()20020002cos n t n n d dd v x v x xe t ξωξωξωωωω-+⎛⎫++- ⎪⎝⎭,瞬态响应,逐步衰减。
特解X2为:()()i t H Ae ωϕω-,稳态响应,实际上的激励和响应仅取实部,响应的频率是激励的频率!222222222222cos arctan cos arctan 112112n n n n n n n n AA t t i ωωξξωωωωωωωωωωξξωωωωωω⎛⎫⎛⎫⎪⎪ ⎪ ⎪-=- ⎪⎪⎛⎫⎛⎫--+- ⎪ ⎪-+ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭幅频特性221()12n n X H Ai ωωωξωω==-+,相频特性222()arctan1n nωξωϕωωω=-若激励表示为i t Ae ω,响应表示为i t Xe ω,可表述()()()x t H f t ω=,则()()()i t x t H Ae ωϕω-=共振频率212r n ωωξ=-,有阻尼自然频率21d n ωωξ=-,因此,对共振的研究应考虑阻尼比ξ=0.707的特殊点。
第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水平 位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程为 :A .()()()y l P s in m y EI =-77683θ t /;B .()()m y EI y lP s in /+=19273θ t ;C .()()m y EI y l P s in /+=38473θ t ;D .()()()y l P s in m y EI =-7963θ t / 。
ll0.50.52、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。
一、 结构动力学是研究什么的?包含什么内容?结构离散化有什么方法、特点?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和方法的一门理论和技术学科。
目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
结构动力分析的目的:确定动力荷载作用下结构的内力和变形;通过动力分析确定结构的动力特性。
离散化方法:把无限自由度问题转化为有限自由度的过程。
1、 集中质量法:是结构动力分析最常见的处理方法,它把连续分布的质量集中为几个质量,这样就把一个原为无限(动力)自由度的问题转化为有限自由度。
特点:采用了真实的物理量,具有直接、直观的优点。
2、 广义坐标法:能决定体系几何位置的彼此独立的量。
特点:采用形函数的概念,在全部体系上插值。
虽然广义坐标表示了形函数的大小,如果形函数是位移量,则广义坐标具有位移的量纲,但只有n 项叠加后才是真实的位移物理量。
因而广义坐标实际上并不是真实的物理量。
3、 有限元法:将整个结构离散化为有限个单元,它们在有限个节点上连接,通过选用适当的形函数,对各个单元进行近似的力学分析处理,建立起单元的节点位移和相应节点之间的关系,然后按照在连接点上的力平衡条件与变形连续条件,把单元拼接成原结构。
特点:综合了集中质量法和广义坐标法的特点:1与广义坐标法相似,采用了形函数的概念,但为分片的插值,形函数的表达式相对简单;2与集中质量法相同,也采用了真实的物理量,具有直观、直接的优点。
3.每一分段所选择的位移函数可以是相同的,故计算得以简化。
4、每个节点位移仅影响其邻近的单元,所以这个方法所导得的方程大部分是非藕合的,因此解方程式的过程大大地简化。
(不作要求,仅供参考)动力荷载的类型:简谐荷载、非荷载周期荷载、冲击荷载、一般任意荷载。
(不作要求,仅供参考)结构动力计算的特点:1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。