两个端点的连线所围成的图形;四面体可以看作是由三角形所
在平面外一点与这个三角形三个顶点的连线所围成的图形.
通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:
三角形
三角形的两边之和大于第三边
四面体
三角形的中位线的长等于第三边长的一半 , 且平
行于第三边
三角形的三条内角平分线交于一点 , 且这个点是
富的联想,利用旧的知识帮助寻找思路或者将原问题降低难 度 ,先解决较简单的问题 ,再类比到复杂问题 ,常常可达到柳 暗花明的成效.
跟踪训练 2
1 设 f ( x) = x ,利用课本中推导等差数列前 n 项和公 2+ 2
式的方法,可求得 f(-5) +f(- 4) +„+f(0)+„+f(5)+f(6) 的值是 3 2 ______.
§1 1.2
[学习目标]
归纳与类比 类比推理
1.通过具体实例理解类比推理的意义. 2.会用类比推理对具体问题作出推断.
知识点一
类比推理
(1)类比推理的含义
由于两类不同对象具有某些类似的特征 , 在此基础上 , 根据 一类对象的其他特征 ,推断另一类对象也具有类似的其他特征 , 这种推理过程称为类比推理. 类比推理是 两类事物特征之间 的推理.
(2)类比推理的特征 类比推理是从特殊到特殊的推理,简称类比.
(3)结论真假:利用类比推理得出的结论不一定是正确的.
(4)思维过程流程图:
观察、比较 ― → 联想、类推 ― → 猜想新的结论
思考 类比推理的结论能作为定理应用吗?
答 不能.因为类比推理的结论不一定正确,只有经过严格
的逻辑证明,说明其正确性,才能进一步应用.
n2+2n-n nn+1 所以 1+2+3+„+n= = . 2 2