数值计算课后答案4
- 格式:doc
- 大小:695.50 KB
- 文档页数:16
第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。
1x =-3。
105 , 2x =0.001, 3x =0。
100, 4x =253。
40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1。
1。
2 设100〉*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。
答案:当10<x 〈100时,因为有5位有效数字,所以绝对误差限为0。
005。
1。
3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3。
004 精确到小数点后两位,所以有三位有效数字。
2)()()()()()()12424112424114224()e x x x x x e x x e x x x x e x x x e x x e x =+=++ =()()()241142124)x x e x x x e x x x e x ++()()()241142124x x e x x x e x x x e x ≤++ =660.5100.31050.0005 3.1050.510--⨯+⨯+⨯⨯ 所以43124() 1.71275100.510x x x ε--=⨯≤⨯124x x x =43.105100.0003105--⨯=-41241244124() 1.7127510()0.5515...3.10510r x x x e x x x x x x ε--⨯===⨯3)()()2222424244444()()1x x e x x e x e e x e x x x x x x ⎛⎫≈-≤+⎪⎝⎭325105420.5100.5100.197316100.77868100.1997100.510253.40253.40------⨯⨯=+=⨯+⨯≈⨯<⨯ 又由24x x 50.3946310-≈⨯知有0位有效数字 ∴522440.1997100.5r x e x x x -⎛⎫⨯≤≈ ⎪⎝⎭1。
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
1习题一1.设x>0相对误差为2%,4x的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?2解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
1数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,92习题一1.设x>0相对误差为2%,4x的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?3解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
第一章题12给定节点01x =−,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项:(1)(1)3()432f x x x =−+(2)(2)43()2f x x x =−解(1)(4)()0f x =,由拉格朗日插值余项得(4)0123()()()()()()()04!f f x p x x x x x x x x x ξ−=−−−−=;(2)(4)()4!f x =由拉格朗日插值余项得01234!()()()()()()4!f x p x x x x x x x x x −=−−−−(1)(1)(3)(4)x x x x =+−−−.题15证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差01210()()()max ()8x x x x x f x p x f x ≤≤−′′−≤.证由拉格朗日插值余项得01()()()()()2!f f x p x x x x x ξ′′−=−−,其中01x x ξ≤≤,010101max ()()()()()()()()2!2!x x x f x f f x p x x x x x x x x x ξ≤≤′′′′−=−−≤−−01210()max ()8x x x x x f x ≤≤−′′≤.题22采用下列方法构造满足条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x :(1)(1)用待定系数法;(2)(2)利用承袭性,先考察插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x .解(1)有四个插值条件,故设230123()p x a a x a x a x =+++,2123()23p x a a x a x ′=++,代入得方程组001231123010231a a a a a a a a a =⎧⎪+++=⎪⎨=⎪⎪++=⎩解之,得01230021a a a a =⎧⎪=⎪⎨=⎪⎪=−⎩23()2p x x x ∴=−;(2)先求满足插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x ,由0为二重零点,可设2()p x ax =,代入(1)1p =,得1a =,2()p x x ∴=;再求满足插值条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x ,可设22()(1)p x x bx x =+−,2()22(1)p x x bx x bx ′=+−+∵,代入(1)1p ′=,得1b =−,2223()(1)2p x x x x x x ∴=−−=−.题33设分段多项式323201()2112x x x S x x bx cx x ⎧+≤≤=⎨++−≤≤⎩是以0,1,2为节点的三次样条函数,试确定系数,b c 的值.解由(1)2S =得212b c ++−=,1b c ∴+=;223201()6212x x x S x x bx c x ⎧+<<′=⎨++<<⎩,由(1)5S ′=得625b c ++=,21b c ∴+=−;联立两方程,得2,3b c =−=,且此时6201()12212x x S x x b x +<<⎧′′=⎨+<<⎩,(1)8(1)S S −+′′′′==,()S x 是以0,1,2为节点的三次样条函数.题35用最小二乘法解下列超定方程组:24113532627x y x y x y x y +=⎧⎪−=⎪⎨+=⎪⎪+=⎩.解记残差的平方和为2222(,)(2411)(353)(26)(27)f x y x y x y x y x y =+−+−−++−++−令00f x f y ∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得3661020692960x y x y −−=⎧⎨−+−=⎩,解之得83027311391x y ⎧=⎪⎪⎨⎪=⎪⎩.题37用最小二乘法求形如2y a bx =+的多项式,使与下列数据相拟合:x1925313844y19.032.349.073.397.8解拟合曲线中的基函数为0()1x ϕ=,20()x x ϕ=,其法方程组为0001010001(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,其中00(,)5ϕϕ=,0110(,)(,)5327ϕϕϕϕ==,11(,)7277699ϕϕ=,0(,)271.4f ϕ=,1(,)369321.5f ϕ=,解之得5320.97265472850.055696a b ⎧==⎪⎪⎨⎪==⎪⎩,20.97260.05y x ∴=+.第二章题3确定下列求积公式中的待定参数,使其代数精度尽量地高,并指明求积公式所具有的代数精度:(2)10120113()(()()424f x dx A f A f A f ≈++∫(2)从结论“在机械求积公式中,代数精度最高的是插值型的求积公式”出发,11000013()(224()11133()()4244x x A l x dx dx −−===−−∫∫,11110013()()144()11133()()2424x x A l x dx dx −−===−−−∫∫,11220011()242()31313()4442x x A l x dx dx −−===−−∫∫,10211123()()()(343234f x dx f f f ∴≈−+∫,当3()f x x =时,有左边=113001()d d 4f x x x x ==∫∫,右边=3332111232111231()()()()()()3432343432344f f f −+=⋅−⋅+⋅=,左边=右边,当4()f x x =时,有左边=114001()d d 5f x x x x ==∫∫,右边=44421112321112337()()()()()()343234343234192f f f −+=⋅−⋅+⋅=,左边≠右边,所以该求积公式的代数精度为3.题8已知数据表x 1.11.3 1.5xe3.00423.66934.4817试分别用辛甫生法与复化梯形法计算积分 1.51.1x e dx∫.解辛甫生法1.51.1xe dx ∫()1.5 1.13.00424 3.66934.4817 1.477546−≈+×+=;复化梯形法1.51.1xe dx ∫()0.23.00422 3.66934.4817 1.482452≈+×+=.题17用三点高斯公式求下列积分值12041dxx π=+∫.解先做变量代换,设)(1+21=t x ,则1204d 1x x +∫=112112418d d 124(1)1(1)4t t t t −−⋅=++++∫∫()2225888589994014141≈×+×+×++⎛⎞⎞++⎜⎟⎟⎝⎠⎠3.141068=.第三章用欧拉方法求解初值问题y ax b ′=+,(0)0y =:(1)试导出近似解n y的显式表达式;解(1)其显示的Euler 格式为:11111(,)()n n n n n n y y hf x y y h ax b −−−−−=+=+⋅+故122()n n n y y h ax b −−−=+⋅+⋯⋯100()y y h ax b =+⋅+将上组式子左右累加,得0021()n n n y y ah x x x nhb−−=+++++⋯(02(2)(1))ah h h n h n h nhb =+++−+−+⋯2(1)/2ah n n nhb=−+题10选取参数p 、q ,使下列差分格式具有二阶精度:1111(,)n n n n y y hK K f x ph y qhK +=+⎧⎨=++⎩.解将1K 在点(,)n n x y 处作一次泰勒展开,得11(,)n n K f x ph y qhK =++21(,)(,)(,)()n n x n n y n n f x y phf x y qhK f x y O h =+++()221(,)(,)(,)(,)(,)()(,)()n n x n n n n x n n y n n y n n f x y phf x y qh f x y phf x y qhK f x y O h f x y O h =++++++2(,)(,)(,)(,)()n n x n n n n y n n f x y phf x y qhf x y f x y O h =+++代入,得()21(,)(,)(,)(,)()n n n n x n n n n y n n y y h f x y phf x y qhf x y f x y O h +=++++2231(,)(,)(,)(,)()n n n n x n n n n y n n y y hf x y ph f x y qh f x y f x y O h +=++++而231()()()()()()2n n n n n h y x y x h y x hy x y x O h +′′′=+=+++23()(,())(,())(,())(,())()2n n n x n n n n y n n h y x hf x y x f x y x f x y x f x y x O h ⎡⎤=++++⎣⎦考虑其局部截断误差,设()n n y y x =,比较上两式,当12p =,12q =时,311()()n n y x y O h ++−=.第四章题2证明方程1cos 2x x=有且仅有一实根;试确定这样的区间[,]a b ,使迭代过程11cos 2k kx x +=对一切0[,]x a b ∈均收敛.解设1()cos 2f x x x=−,则()f x 在区间(,)−∞+∞上连续,且11(0)cos 0022f =−=−<,1(cos 022222f ππππ=−=>,所以()f x 在[0,]2π上至少有一根;又1()1sin 02f x x ′=+>,所以()f x 单调递增,故()f x 在[0,]2π上仅有一根.迭代过程11cos 2k k x x +=,其迭代函数为1()cos 2g x x=,[0,]2x π∀∈,110()cos 222g x x π≤=≤≤,()[0,]2g x π∴∈;1()sin 2g x x ′=−,1()12g x ′≤<,由压缩映像原理知0[0,2x π∀∈,11cos 2k kx x +=均收敛.注这里取[,]a b 为区间[0,]2π,也可取[,]a b 为区间(,)−∞+∞等.题5考察求解方程1232cos 0x x −+=的迭代法124cos 3k kx x +=+(1)(1)证明它对于任意初值0x 均收敛;(2)证明它具有线性收敛性;证(1)迭代函数为2()4cos 3g x x=+,(,)x ∀∈−∞+∞,()(,)g x ∈−∞+∞;又22()sin 133g x x ′=−≤<,由压缩映像原理知0x ∀,124cos 3k k x x +=+均收敛;(2)***1*2lim ()sin 03k k k x x g x x x x +→∞−′==−≠−(否则,若*sin 0x =,则*,x m m Z π=∈,不满足方程),所以迭代124cos 3k kx x +=+具有线性收敛速度;题7求方程3210x x −−=在0 1.5x =附近的一个根,证明下列两种迭代过程在区间[1.3,1.6]上均收敛:(1)(1)改写方程为211x x =+,相应的迭代公式为1211k k x x +=+;(2)(2)改写方程为321x x =+,相应的迭代公式为1k x +=解(1)3232211011x x x x x x −−=⇔=+⇔=+,迭代公式为1211k k x x +=+,其迭代函数为21()1g x x =+[1.3,1.6]x ∀∈,2221111.3 1.3906111 1.5917 1.61.6 1.3x ≤≈+≤+≤+≈<,()[1.3,1.6]g x ∴∈;又32()g x x ′=−,333222-0.9103==-0.48831.3 1.6x −−−≤≤,()0.91031g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1211k k x x +=+均收敛;(2)3232101x x x x x −−=⇔=+⇔=1k x +=其迭代函数为()g x =[1.3,1.6]x ∀∈,1.3 1.3908 1.5269 1.6≤≈≤≤≈<,()[1.3,1.6]g x ∴∈;又()g x ′=,00.4912≤≤≤=,()0.49121g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1k x +=均收敛.题5分别用雅可比迭代与高斯-塞德尔迭代求解下列方程组:1231231235325242511x x x x x x x x x +−=⎧⎪−+=⎨⎪+−=−⎩(2)其雅可比迭代格式为(1)()()123(1)()()213(1)()()312253512221121555k k k k k k k k k x x x x x x x x x +++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散;其高斯-塞德尔迭代格式为(1)()()123(1)(1)()213(1)(1)(1)312253512221121555k k k k k k k k k x x x x x x x x x ++++++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散.第六章题2用主元消去法解下列方程组)12312312323553476335x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩解(2)对其增广矩阵进行列主元消元得23553476347634763476235501/31/3105/32/331335133505/32/3301/31/31⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟→→→⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠347605/32/33001/52/5⎛⎞⎜⎟→⎜⎟⎜⎟⎝⎠回代求解上三角方程组1232333476523331255x x x x x x ⎧⎪++=⎪⎪+=⎨⎪⎪=⎪⎩得321214x x x =⎧⎪=⎨⎪=−⎩,所以412x −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠.。
数值计算方法课后习题答案(李庆扬等)绪论(12)1、设x 0,x的相对误差为,求lnx的误差。
[解]设x* 0为x的近似值,则有相对误差为r*(x) ,绝对误差为*(x) x*,从而lnx的误差为*(lnx) (lnx*) (x*) 相对误差为(lnx)*r1*x ,x**(lnx)lnx*lnx*。
2、设x的相对误差为2%,求xn的相对误差。
[解]设x*为x的近似值,则有相对误差为r*(x) 2%,绝对误差为*(x) 2%x*,从而x的误差为(lnx) (x) 相对误差为(lnx)*rn*nx x*(x) n(x)**n 12%x 2n% x**n,*(lnx)(x)*n2n%。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:*****x1 1.1021,x2 0.031,x3 56.430,x5 385.6,x4 7 1.0。
***[解]x1 1.1021有5位有效数字;x2 0.0031有2位有效数字;x3 385.6有4**位有效数字;x4 56.430有5位有效数字;x5 7 1.0有2位有效数字。
****4、利用公式(3.3)求下列各近似值的误差限,其中x1均为第3题所给,x2,x3,x4的数。
***(1)x1;x2 x4f *******e*(x1 x2 x4) (x) (x) (x) (xk124) xk 1 k [解];11110 4 10 3 10 3 1.05 10 3222n****(2)x1x2x3;f***e*(x1x2x3)k 1 xkn ********** (x) (xx) (x) (xx) (x) (xx) (x)k***-*****3*1[解] (0.031 385.6)1 10 4 (1.1021 385.6)1 10 3 (1.1021 0.031) 10 3;2220.***** 10 3 212.***** 10 3 0.***-***** 10 3213.***-***** 10 3 0.***-*****255**(3)x2。
第一章 绪论一 本章的学习要求(1)会求有效数字。
(2)会求函数的误差及误差限。
(3)能根据要求进行误差分析。
二 本章应掌握的重点公式(1)绝对误差:设x 为精确值,x *为x 的一个近似值,称e x x **=-为x *的绝对误差。
(2)相对误差:r e e x***=。
(3)绝对误差限:e x x ε***==-。
(4)相对误差限:r x x xxεε*****-==。
(5)一元函数的绝对误差限:设一元函数()()()0,df f x f x dx εε***⎛⎫==⋅ ⎪⎝⎭则。
(6)一元函数的相对误差限:()()1r df f x dx f εε****⎛⎫=⋅ ⎪⎝⎭。
(7)二元函数的绝对误差限:设一元函数()()(),0,f f x y f y y εε***⎛⎫∂==⋅ ⎪∂⎝⎭则。
(8)二元函数的相对误差限:()()()1r f f f x y x y f εεε******⎡⎤⎛⎫∂∂⎛⎫⎢⎥=⋅+⋅ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦。
三 本章习题解析1. 下列各数都是经过四舍五入得到的近似值,(1)试指出它们有几位有效数字,(2)分别估计1123A X X X ***=及224X A X **=的相对误差限。
12341.1021,0.031,385.6,56.430x x x x ****====解:(1)1x *有5位有效数字,2x *有2位有效数字,3x *有4位有效数字,4x *有5位有效数字。
(2)1111123231312123,,,,A A AA x x x x x x x x x x x x ∂∂∂====∂∂∂由题可知:1A *为1A 的近似值,123,,x x x ***分别为123,,x x x 近似值。
所以()()111rA A Aεε***=()()()12311111123A A A x x x A X X X εεε*******⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫∂∂∂ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭43123131212311111010100.215222x x x x x x x x x **-**-**-***⎡⎤=⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦()222222424441,,,X A Ax A X x x x x ∂∂===-∂∂则有同理有2A *为2A 的近似值,2x *,4x *为2x ,4x 的近似值,代入相对误差限公式:()()222rA A Aεε***=()()24212224A A X X A X X εε*****⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭()33542224411*********X X X X X **--***⎡⎤⎢⎥=⨯⨯+⨯⨯=⎢⎥⎣⎦2. 正方形的边长大约为100cm ,怎样测量才能使其面积误差不超过21cm ? 解:设正方形的边长为x ,则面积为2S x =,2dsx dx=,在这里设x *为边长的近似值,S *为面积的近似值:由题可知:()()1ds s x dx εε***=≤⎛⎫ ⎪⎝⎭即:()21x x ε**⋅≤ 推出:()10.005200xcm ε*≤=。
习题一1、取3.14,3.15,722,113355作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
解:14.31=x312110211021--⨯=⨯≤-x π所以,1x 有三位有效数字绝对误差:14.3-=πe ,相对误差:ππ14.3-=r e 绝对误差限:21021-⨯≤ε,相对误差限:213106110321-+-⨯=⨯⨯=r ε21122105.0105.01084074.000840174.015.315.3---⨯=⨯≤⨯==-=πx所以,2x 有两位有效数字绝对误差:15.3-=πe ,相对误差:ππ15.3-=r e 绝对误差限:11021-⨯=ε,相对误差限:11061-⨯=r ε31222105.0105.01012645.00012645.0722722---⨯=⨯≤⨯==-=πx所以,3x 有三位有效数字绝对误差:722-=πe ,相对误差:ππ722-=r e绝对误差限:21021-⨯=ε,相对误差限:21061-⨯=r ε1133551=x 7166105.0105.01032.000000032.0113355---⨯=⨯≤⨯==-π 所以,4x 有七位有效数字绝对误差:113355-=πe ,相对误差:ππ113355-=r e绝对误差限:61021-⨯=ε,相对误差限:61061-⨯=r ε3、下列各数都是对准确数四舍五入后得到的近似数,试分别指出它们的绝对误差限和相对误差限,有效数字的位数。
5000,50.31,3015.0,0315.04321====x x x x解:0315.01=x m=-13141*10211021---⨯=⨯≤-x x 所以,n=3,1x 有三位有效数字绝对误差限:41021-⨯=ε,相对误差:2110611021-+-=⨯=n r a ε3015.02=x m=04042*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:41021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50.313=x m=24223*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:21021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50004=x m=44404*10211021-⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:5.010210=⨯=ε,相对误差:23110105211021--+-=⨯=⨯=n r a ε 4、计算10的近似值,使其相对误差不超过%1.0。
《数值计算基础》习题集第1章引论1、已知,求近似值的有效数字位数、绝对误差限和相对误差限。
2、下列各数均为四舍五入得到,指出它们各具有几位有效数字及绝对误差限和相对误差限: (1) 6000 (2)7000.00 (3)2.00023、将下列各数舍入成三位有效数字,并确定近似值的绝对误差和相对误差。
(1) 2.1514 (2) -392.85 (3) 0.0039224、已知各近似值的相对误差,试确定其绝对误差: (1) 13267 (2) 0.2965、已知各近似值及其绝对误差,试确定各数的有效位数。
(1) 0.3941 (2)293.481 (3) 0.003816、已知各近似值及其相对误差,试确定各数的有效位数。
(1) 1.8921 (2) 22.351 (3) 48361 注:相对误差与有效数字的关系请使用以下定理定理:设x 是准确值,x*是近似值)(10....0*21Z k x x x x k n ∈⨯±=,其中n x x x ,...,,21都是0~9十个数字之一,且01≠x 。
(1)若x*有n 位有效数字,则其相对误差限为111021+-⨯n x 。
(2)若x*的相对误差限为1110)1(21+-⨯+n x ,则x*有n 位有效数字。
参考答案1、有效数字位数4位,,2、(1)4位,, (2)6位,, (3)5位,,3、(1)2.15,, (2)-393,, (3)0.00392,,4、(1)(2)5、(1)2位(2)3位(3)2位6、(1)3位(2)1位(3)2位第2章解线性方程组的直接法1、用高斯顺序消元法解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141421123412321x x x 2、用高斯列主元消去法解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11124112345111321x x x 3、用Doolittle 三角分解法求解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5481332222224321x x x4、求矩阵的Crout 三角分解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----13322222245、求矩阵的Cholesky 三角分解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--22484548416参考答案 1、 2、 3、4、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1112121192212413322222245、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--33221433221422484548416第3章插值法与最小二乘法Newton 插值法求其插值多项式,并给出余项。
习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E= 0.0102; 2位有效数字. 0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… ,取它们的相同部分3.14,故有3位有效数字.E= 3.1428 - 3.1415 = 0.0013 ;r E = 14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α= 1,因此有 |)(*x E r |)1(10121−−××=n < = 21× 10-4, 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n−=≈−−)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =−=−≈=− 5、解:(1)因为=204.4721…… , 又=)(*x E |*x x −| = |47.420−| = 0.0021 < 0.01, 所以 =*x4.47. (2)20的近似值的首位非0数字1α = 4,因此有|)(*x E r |)1(10421−−××=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10 c m .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =−=−= < = 0.1,所以)(*x E< = 0.005 c m . 7、解:因为)()(*1x x nx x E n n −≈−,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==−≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =−≈−=t t E gt t t gt S S S S E r )(22/)()(2**=−≈−= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*00x x −| < = δ=×−21021于是有|*11x x −| = |110110*00+−−x x | = 10|*00x x −| < =δ10|*22x x −| = |110110*11+−−x x | = 10|*11x x −| < =δ210类推有 |*1010x x −| < =810102110×=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法. (1)方程组的增广矩阵为:−−−−11114423243112M M M → −−−−1010411101110112M M M →−−−11041001110112M M M → 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:−−−−−−017232221413M M M → −−247210250413M M M → −−147200250413M M M → 21=x , 12=x, 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114−=u3/1/112121==u a l 6/1/113131==u a l 6/1/114141−==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=−=u l a u 3/213212323=−=u l a u 3/114212424=−=u l a u 5/1/)(2212313232=−=u u l a l 10/1/)(2212414242=−=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=−−=u l u l a u 10/9243214313434−=−−=u l u l a u 37/9/)(33234213414343−=−−=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444−=−−−=u l u l u l a u从而,−−−−3101141101421126 =−−137/910/16/1015/16/10013/10001−−−370/95500010/910/37003/13/23/1001126 由b LY =, 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T . 3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断. 11a = 3 > 0,2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632−=l 233=l 因此, L =−23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 331=l 632−=l 333=l因此, L =−363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66−,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T. 4、解: 对1=i , 2111==a d ;对2=i , 121−=t , 2121−=l ,252−=d ; 对3=i , 131=t , 2732=t ,2131=l , 5732−=l ,5273=d .所以数组A 的形式为:−−−=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T .求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU =1010000000000010010015432l l l l5432106000000000600006006u u u u u 计算各元素得: 51=u ,512=l , 1952=u , 1953=l , 19653=u , 65194=l , 652114=u , 211655=l , 2116655=u .求解方程组LY = d . 解得Y = (1,51−,191,651−,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395−,665212)T.(2)设A = LU =100100132l l3211001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T. 求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同. 因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+−−=+k k k x x x14141)(3)(1)1(2+−−=+k k k x x x329292)(2)(1)1(3+−−=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+−−=+k k k x x x14141)(3)1(1)1(2+−−=++k k k x x x329292)1(2)1(1)1(3+−−=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+−=+k k k x x x 525351)(3)(1)1(2++−=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+−=+k k k x x x 525351)(3)1(1)1(2++−=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。
目录第一章-----------------------------------------1 第二章-----------------------------------------4 第三章-----------------------------------------9 第四章-----------------------------------------15 第五章-----------------------------------------20 第六章-----------------------------------------27 第七章-----------------------------------------30第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。
1x =-3.105 , 2x =0.001, 3x =0.100, 4x =253.40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1.1.2 设100>*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。
答案:当10<x<100时,因为有5位有效数字,所以绝对误差限为0.005. 1.3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3.004 精确到小数点后两位,所以有三位有效数字。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法丁丽娟课后习题答案【篇一:北京理工大学数值计算方法大作业数值实验1】)书p14/4分别将区间[?10,10]分为100,200,400等份,利用mesh或surf命令画出二元函数的三维图形。
z=|??|+ ??+?? +??++??【matlab求解】[x,y]=meshgrid(-10:0.1:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.05:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.025:10); a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);(二)书p7/1.3.2数值计算的稳定性(i)取= ??c语言程序—不稳定解 +=ln1.2,按公式=?? (n=1,2,…) #includestdio.h#includeconio.h#includemath.hvoid main(){float m=log(6.0)-log(5.0),n;int i;i=1;printf(y[0]=%-20f,m); while(i20){n=1/i-5*m;printf(y[%d]=%-20f,i,n);m=n;i++;if (i%3==0) printf(\n); }getch();}(ii) c语言程序—稳定解≈??[ ??+?? +?? ??+??按公式 =??(??)#includestdio.h#includeconio.h#includemath.hvoid main(){float m=(1/105.0+1/126.0)/2,n; k=n,n-1,n-2,…)(【篇二:北京理工大学数值计算方法大作业数值实验4】 p260/1考纽螺线的形状像钟表的发条,也称回旋曲线,它在直角坐标系中的参数方程为= ?????????????????? ?? ??????????= ?????????????? ??曲线关于原点对称,取a=1,参数s的变化范围[-5,5],容许误差限分别是,,和。
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
习 题 四 解 答1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。
解:根据已知条件,有设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为1011a b a b e -⨯+=⎧⎨⨯+=⎩ 解之得111a eb -⎧=-⎨=⎩则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为(1)(2)(2)011()()()()()(1)!1()()2!1()()()2!1(0)(1)((0,1))2n r x f x p x f x n f x f x x x x e x x ξξπξπξξ+-=-=+==--=--∈所以010101()max max (1)2111248x r x e x x e ξξ-≤≤≤≤-≤-=⨯⨯=。
2选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。
解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为230123230123230123230123(0.1)(0.1)(0.1)0.9950.30.30.30.9950.70.70.70.7651.1 1.1 1.10.454a a a a a a a a a a a a a a a a ⎧+⨯-+⨯-+⨯-=⎪+⨯+⨯+⨯=⎪⎨+⨯+⨯+⨯=⎪⎪+⨯+⨯+⨯=⎩即012301230123123012312301230.10.010.0010.9950.10.010.0010.9950.30.090.0270.9950.40.080.02800.70.490.3430.7650.80.480.344 1.761.1 1.21 1.3310.454a a a a a a a a a a a a a a a a a a a a a a a a a a -+-=-+-=⎧⎪+++=++=⎪⇒⎨+++=++=⎪⎪+++=⎩12301231232330.40.720.9880.3110.10.010.0010.9950.40.080.02800.320.288 1.760.384 3.831a a a a a a a a a a a a a ⎧⎪⎪⎨⎪⎪++=-⎩-+-=⎧⎪++=⎪⇒⎨+=⎪⎪-=-⎩解之得 01230.416.293.489.98a a a a =⎧⎪=-⎪⎨=-⎪⎪=⎩ 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+. 所以2323(0.2)0.41 6.290.2 3.480.29.980.20.91(0.8)0.41 6.290.8 3.480.89.980.8 1.74f f =-⨯-⨯+⨯=-=-⨯-⨯+⨯=-3、设(0,1,2,,)i x i n =是 n+1个互异节点,证明: (1)0()(0,1,2,,)nk k i i i x l x x k n ===∑;(2)0()()0(0,1,2,,)n k i i i x x l x k n =-==∑。
习 题 四 解 答1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。
设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为解之得111a eb -⎧=-⎨=⎩则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为 所以010101()max max (1)2111248x r x e x x e ξξ-≤≤≤≤-≤-=⨯⨯=。
2选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。
解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为 即解之得则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。
所以3、设(0,1,2,,)i x i n =是 n+1个互异节点,证明:(1)0()(0,1,2,,)n k k i i i x l x x k n ===∑;(2)0()()0(0,1,2,,)nk i i i x x l x k n =-==∑。
证明: (1)由拉格朗日插值定理,以x 0,x 1,x 2,…x n 为插值节点,对y=f(x)=x k 作n 次插值,插值多项式为 0()()nn i i i p x l x y ==∑,而y i =x i k ,所以0()()()n nk n i i i i i i p x l x y l x x ====∑∑同时,插值余项 所以0()nk k i i i l x x x ==∑结论得证。
(2)取函数()(),0,1,2,,k f x x t k n =-=对此函数取节点(0,1,2,,)i x i n =,则对应的插值多项式为0()()()nk n i i i p x x t l x ==-∑,由余项公式,得(1)(1)011()()()()()()()()0(1)!(1)!nn kk n ki i i r x x t x t l x f x x t x n n ξξππ++==---==-=++∑所以令t=x ,4()f x = (1)试用线性插值计算f(2.3)的近似值,并估计误差;(2)试用二次Newton 插值多项式计算f(2.15)的近似值,并估计误差。
解:用线性插值计算f(2.3),取插值节点为2.2和2.4,则相应的线性插值多项式是用x=2.3代入,得 (2)根据定理2f(x)=f(x 0)+f[x 0,x 1](x-x 0)+f[x 0,x 1,x 2](x-x 0)(x-x 1)+…+f[x 0,x 1,…,x n ](x-x 0)(x-x 1)…(x-x n -1)+f[x 0,x 1,…,x n ,x]π(x) 。
以表中的上方一斜行中的数为系数,得f(2.15)=1.41421+0.3501 ×(2.15-2.0)-0.047 ×(2.15-2.0) ×(2.15-2.1) =1.663725指出: 误差未讨论。
557()0167(1)(1)(2)(1)(2)(4)26p x x x x x x x x x x x =++--------。
指出: 余项未讨论。
解:由已知条件,显然,x 0=0,h=1,x=t 。
0(1)(1)(2)(1)(2)(3)()()01614(2)(140)2!3!4!(1)(2)35167(1)(1)(2)(3)36n n t t t t t t t t t p x th p t t t t t t t t t t t t ------+==+⨯+⨯+⨯-+⨯---=+------指出:在本题这种情况下,实际上()()n n p t p x =,也就是说,在这样的条件下,t 的多项式就是x 的多项式,可以直接转换。
一般情况下,把t 的关系转换为x 的关系需要根据x=x 0+th ,将t 用x 表示,即将0x x t h-=代入得到的多项式。
6解:所给节点是等距结点:000.125,0.125,,0,1,2,3,4,5i x h x x ih i ===+=。
令00()x x th t h=+=,根据等距结点插值公式,得 0(1)()()0.79618(0.02284)(0.00679)2!(1)(2)(1)(2)(3)(1)(2)(3)(4)(0.00316)0.00488(0.00460)3!4!5!n n t t p x th p t t t t t t t t t t t t t t -+==+⨯-+⨯----------+⨯-+⨯+⨯-则(0.1581)(0.1581)(0.1250.2648)0.790294822,(0.636)(0.6363)(0.125 4.088)0.651804826n n n n f p p h f p p h ≈=+=≈=+=。
7、设f(x)在[-4,4]有连续的4阶导数,且(1)试构造一个次数最低的插值多项式p(x),使其满足(1)(1)1,(0)(0)2,(0)(0)0,(3)(3)1,(3)(3)1p f p f p f p f p f ''''-=-=-======== (2)给出并证明余项f(x)-p(x)的表达式。
解:(1)由7*可以求出满足的三次埃尔米特插值多项式3252()2273H x x x =-+。
设22322252()()(3)2(3)273p x H x a x x x x a x x =+-=-++-,则p(x)满足(0)(0)2,(0)(0)0,(3)(3)1,(3)(3)1p f p f p f p f ''''========, 由(1)1f -=得 3222521(1)(1)2(13)(1)1273108a a ⨯--⨯-++---=⇒=-, 所以223222432521()()(3)2(3)27310811332108544p x H x a x x x x x x x x x =+-=-+--=-++-+。
(2)余项具有如下结构 作辅助函数则显然()t ϕ在点,1,0,3x -处有6个零点(其中0,3是二重零点),即 ()0,(1)0,(0)0,(0)0,(3)0,(3)0x ϕϕϕϕϕϕ''=-=====, 不妨假设(1,0)x ∈-。
由罗尔定理,存在123(1,),(,0),(0,3)x x ξξξ∈-∈∈, 使得123()0,()0,()0ϕξϕξϕξ'''===,再注意到(0)0,(3)0ϕϕ''==,即()t ϕ'有5个互异的零点12303ξξξ<<<< 再次由罗尔定理得,存在111223343(,),(,0),(0,),(,3)ηξξηξηξηξ∈∈∈∈, 使得1234()0,()0,()0,()0ϕηϕηϕηϕη''''''''====第三次应用罗尔定理得,存在112223334(,),(,),(,)ξηηξηηξηη∈∈∈ 使得123()0,()0,()0ϕξϕξϕξ'''''''''===,第四次应用罗尔定理得,存在112223(,),(,)μξξμξξ∈∈ 使得(4)(4)12()0,()0ϕμϕμ==,第五次应用罗尔定理得,存在12(,)τμμ∈使得(5)()0ϕτ= 注意到(()()()r t f t p t =-中p(t)是4次函数,其5次导数为0)。
所以(5)(5)(5)()()()5!()=0()=5!f f k x k x ξϕττ=-⇒,代入余项表达式,有(5)22()()()()(1)(3)5!f r x f x p x x x x ξ=-=+-。
指出:本题是非标准插值问题,比较简单的求解方法有:①求插值问题的基本方法是待定系数法。
以本题来说,有5个条件,可以确定一个4次的插值多项式,设为23301233y a a x a x a x a x =++++,将条件代入,建立一个5元的线性方程组,求出各参数,就可以求出插值多项式。
②求插值问题的第二种方法是基函数法,即根据给定条件设定插值多项式的结构和各基函数的结构,根据条件确定基函数即可。
具体方法与拉格朗日插值基函数构造和埃尔米特插值基函数构造相似。
③以标准插值为基础的方法是一种更简单的方法,本题中,首先利用4个条件构造一个埃尔米特插值,在此基础上设定所求插值多项式的一般形式,保证其满足埃尔米特插值条件,代入未利用条件解方程(组),求出其中的未知参数,即可求出插值多项式。
本题也可以先利用(1)(1)1,(0)(0)2,(3)(3)1p f p f p f -=-=-====构造一个2次插值多项式2()p x ,以此为基础构造4次插值多项式4()p x ,4()p x 的结构是42()()()(1)(3)p x p x ax b x x x =+++-,满足再根据(0)(0)0,(3)(3)1p f p f ''''====列出两个线性方程组成的方程组,求出a 、b 两个参数,即可求出所求的插值多项式。
求插值函数余项()r x 的常用方法是:()()()r x f x p x =-应具有如下形式(以本题为例)作辅助函数则()t ϕ在点,1,0,3x -处有6个零点(其中0,3是二重零点)。
反复应用罗尔定理,直到至少有一个(4,4)τ∈-,使得(5)()0ϕτ=。
此时即有代入余项表达式即可求出。
7*、设f(x)在[-4,4]有连续的4阶导数,且试用两种方法构造三次埃尔米特插值多项式H(x),使其满足 (0)(0)2,(0)(0)0,(3)(3)1,(3)(3)1p f p f p f p f ''''========。
解一(待定系数法):解:设230123()H x a a x a x a x =+++,则2123()23H x a a x a x '=++,由插值条件得解之得0123252,0,,327a a a a ===-=,所以3252()2273H x x x =-+。
解二(基函数法):解:设300110011()()()()()()()()()H x f x x f x x f x x f x x ααββ''=+++,因为线性拉格朗日插值基函数为100133()033x x x xl x x x ---===--,01100()303x x x xl x x x --===--,由④得 同理 由⑤得 则3252()2273H x x x =-+。