7 实验七计数器
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
实验七:同步机构实验报告一、实习内容模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
二、实习目的进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
三、实习题目模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
实验七微生物数量的测定一、实验目的1.掌握在液态和固态培养基上进行微生物计数的方法。
2.掌握稀释系数的计算方法。
3.了解红外辐射计数器的检测功能和操作方法。
二、实验原理在液体培养基上进行微生物计数的方法属于定量分析中的一项基本技术,其主要原理为先将微生物和加有营养物质的液体平均混合,然后分别取出适当体积,经过一定的稀释,将其等量分配到不同的培养皿内,然后在液体培养基上进行生长,最后根据各个培养皿内微生物生长的数量来计算初始菌落的数目。
其中,常用的标准液体培养基有肉汤、营养琼脂、拟南芥培养基等。
但该方法存在的问题在于,微生物生长的速度会因培养基的不同而有很大区别,如在肉汤培养基上生长较慢,需要长达24小时才能形成充分的菌落,而在营养琼脂培养基上生长则较快,并且易于观察。
此外,该方法要求使用无菌技术,并且在取样时需要注意尽量避免空气中污染菌落的产生,否则将会导致不准确的计数结果。
2.微生物计数固体培养基法在固体培养基上进行微生物计数的方法是将微生物标本均匀涂于固体培养基上,然后生长出菌落进行计数。
与液体培养基相比,该方法在菌落的形成方面更直观,且繁殖数目相对更多,故计数更为准确。
常用的固体培养基有营养琼脂、马铃薯葡萄糖琼脂、血液琼脂等。
但该方法存在的问题在于,菌落大小、形状、颜色等因素均可能影响计数结果,在计数时需要注意与目测直接形状相同的菌落合并计算,否则会造成漏计或重复计数的情况。
稀释是将一定量的菌液,通过逐步加入相等体积的稀释液而逐渐降低其菌落总体载量的过程。
通过分析稀释液与菌落的比例,就可以得到相对菌落的绝对数量。
其中,稀释系数是指菌液按递减顺序与相应稀释液的混合比例。
4.红外辐射计数器红外辐射计数器是一种基于消光和反射原理的微生物计数仪器,其原理是通过辐射源向样品发射一定频率的红外辐射,并接收样品的反射光信号,在计算机系统的驱动下对数码化数据进行处理,最终得到表示原始样品生化物数量的结果。
班级姓名学号一、实验项目:计数器二、使用集成块型号:74LS00、74LS161、74LS74.三、实验内容:1、测试74LS161十六进制计数器的逻辑功能。
CP脉冲输入端;CR异步清零端;LD同步置数端;CT T、CT P计数允许控制端;CO进位输出端。
D3、D2、D1、D0数据输入端;Q3、Q2、Q1、Q0输出端;2、利用直接清零法,使用计数器74LS161和与非门74LS00构成十二进制计数器,并画出状态图。
3、用预置数据法,使用计数器74LS161和与非门74LS00构成构成七进制计数器,并画出状态图。
4、采用级联法,使用两片74LS161和与非门74LS00构成二十四进制计数器,画出逻辑电路图,根据逻辑图连线。
利用单脉冲输入源给CP端加入脉冲信号,观察输出Q3Q2Q1Q0端的状态变化,并画出状态图。
5、用74LS74D触发器构成两位二进制异步加法计数器。
6、用74LS74D触发器构成两位二进制异步减法计数器,将左图电路中的低位触发器的Q端和高位的CP端相连接,构成减法计数器。
置数和清零的区别:清零的信号是立即产生的,比如都对于十进制来说,若采用清零法,则应该利用9的二进制,1001的下一位1010来产生脉冲信号,将输出端的第一位和第三位通过与非门得到低电平将161清零,也就是说我们利用的真正状态是10的二进制。
而如果我们采用置数法,因为芯片的设计原因,在计数器进入9的二进制1001后,输出端并没有立即置数,而是保持该状态不变,直到下一个时钟脉冲的上升沿到来为止,这个1001是一个稳定的状态,我们利用它的第0位和第三位通过与非门得到低电平将161置位为0000,才能形成十进制,那么我们利用的真正状态是9的二进制,而不是10,这就是清零与置数的根本区别。
实验一:扩展存储器读写实验一.实验要求编制简单程序,对实验板上提供的外部存贮器(62256)进行读写操作。
二.实验目的1.学习片外存储器扩展方法。
2.学习数据存储器不同的读写方法。
三.实验电路及连线将P1.0接至L1。
CS256连GND孔。
四.实验说明1.单片机系统中,对片外存贮器的读写操作是最基本的操作。
用户藉此来熟悉MCS51单片机编程的基本规则、基本指令的使用和使用本仿真实验系统调试程序的方法。
用户编程可以参考示例程序和流程框图。
本示例程序中对片外存贮器中一固定地址单元进行读写操作,并比较读写结果是否一致。
不一致则说明读写操作不可靠或该存储器单元不可靠,程序转入出错处理代码段(本示例程序通过熄灭一个发光二极管来表示出错)。
读写数据的选用,本例采用的是55(0101,0101)与AA(1010,1010)。
一般采用这两个数据的读写操作就可查出数据总线的短路、断路等,在实际调试用户电路时非常有效。
用户调试该程序时,可以灵活使用单步、断点和变量观察等方法,来观察程序执行的流程和各中间变量的值。
2.在I状态下执行MEM1程序,对实验机数据进行读写,若L1灯亮说明RAM读写正常。
3.也可进入LCA51的调试工具菜单中的对话窗口,用监控命令方式读写RAM,在I状态执行SX0000↓ 55,SPACE,屏幕上应显示55,再键入AA,SPACE,屏幕上也应显示AA,以上过程执行效果与编程执行效果完全相同。
注:SX是实验机对外部数据空间读写命令。
4.本例中,62256片选接地时,存储器空间为0000~7FFFH。
五.实验程序框图实验示例程序流程框图如下:六.实验源程序:ORG 0000HLJMP STARTORG 0040HSTART:MOV SP,#60HMOV DPTR,#0000H ;置外部RAM读写地址MOV A,#55H ;测试的数据一MOV B,AMOVX @DPTR,A ;写外部RAMMOVX A,@DPTR ;读外部RAMXRL A,B ;比较读回的数据JNZ ERRORMOV A,#0AAH ;测试的数据二MOV B,AMOVX @DPTR,AMOVX A,@DPTRXRL A,BJZ PASS ;测试通过ERROR: SETB P1.0 ;测试失败,点亮LEDSJMP $PASS: CPL P1.0 ;LED状态(亮/灭)转换MOV R1,#00H ;延时DELAY: MOV R2,#00HDJNZ R2,$DJNZ R1,DELAYLJMP START ;循环测试END实验二P1口输入、输出实验一.实验要求1.P1口做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。
计数器的实验观察与分析计数器是一种常见的电子设备,用于计算和显示一个或多个事件的数量。
本次实验的目的是观察和分析一个四位数的数字计数器的工作原理和性能。
实验步骤如下:1. 实验装置:一台四位数的数字计数器、一个交流电源和连接电线。
2. 连接电路:将交流电源的正极和数字计数器的Vcc引脚连接,将交流电源的负极和数字计数器的地引脚连接。
3. 调整电源电压:将交流电源的电压调整到合适的范围,例如5V。
4. 计数电路:将计数器的输入引脚与电源连接。
5. 数字显示:将计数器的输出引脚与七段数码管连接。
6. 实验观察:打开交流电源,观察数字计数器的工作情况。
记录显示在四位数码管上的数字变化。
根据观察数据,进行以下分析和讨论:1. 计数范围:观察实验当中计数器最高能计数到的数。
根据实验结果,推断该计数器的计数范围。
2. 计数方式:观察数字的计数变化模式,判断计数器采用的计数方式是递增还是递减。
通过改变输入引脚的电压,可以验证计数器的计数方式。
3. 计数精度:观察实验过程中数字计数器是否存在计数误差。
将计数器与其他测量设备(如计时器)进行对比,以确定计数器的计数精度。
4. 显示方式:观察数字计数器的显示方式。
是否采用了七段数码管进行数字显示,或者是采用其他显示器件。
5. 重置功能:观察数字计数器是否具备重置功能。
通过改变输入引脚的电压,验证计数器的重置功能。
通过上述的实验观察和分析,我们可以了解到数字计数器的基本工作原理、计数范围、计数方式、计数精度、显示方式以及是否具备重置功能等。
这些了解对于进一步应用数字计数器有很大帮助,例如在电子测量、物理实验、工业自动化等领域都有广泛应用。
6. 计数范围:根据实验结果观察到的最高数字,可以推断出该计数器的计数范围。
比如,如果实验结果显示的最高数字是9,则可以推断该计数器的范围为0-9。
如果最高数字是F(十六进制),则范围为0-F。
7. 计数方式:观察数字的计数变化模式可以推断出计数器采用的计数方式是递增还是递减。
实验七时序逻辑电路设计一、实验目的1. 学习用集成触发器构成计数器的方法。
2. 熟悉中规模集成十进制计数器的逻辑功能及使用方法。
3. 学习计数器的功能扩展。
4. 了解集成译码器及显示器的应用。
二、实验原理计数器是一种重要的时序逻辑电路,它不仅可以计数,而且用作定时控制及进行数字运算等。
按计数功能计数器可分加法、减法和可逆计数器,根据计数体制可分为二进制和任意进制计数器,而任意进制计数器中常用的是十进制计数器。
根据计数脉冲引入的方式又有同步和异步计数器之分。
1. 用D触发器构成异步二进制加法计数器和减法计数器:图10—1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T'触发器形式,再由低位触发器的Q端和高一位的CP端相连接,即构成异步计数方式。
若把图10—1稍加改动,即将低位触发器的Q端和高一位的CP端相连接,即构成了减法计数器。
图10—1本实验采用的D触发器型号为74LS74A,引脚排列见前述实验。
2. 中规模十进制计数器中规模集成计数器品种多,功能完善,通常具有予置、保持、计数等多种功能。
74LS182同步十进制可逆计数器具有双时钟输入,可以执行十进制加法和减法计数,并具有清除、置数等功能。
引脚排列如图10—2所示。
其中LD−−置数端;CP u−−加计数端;CP D−−减计数端;DO−−非同步进位输出端;CO−−非同步借位输出端;Q A、Q B、Q C、Q D−−计数器输出端;D A、D B、D C、D D−−数据输入端;CR−−清除端。
表10—1为74LS192功能表,说明如下:当清除端为高电平“1”时,计数器直接清零(称为异步清零),执行其它功能时,CR置低电平。
当CR为低电平,置数端LD为低电平时,数据直接从置数端D A、D B、D C、D D置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CP D接高电平,计数脉冲由加计数端Cp u输入,在计数脉冲上升沿进行842编码的十进制加法计数。
计数器的应用实验总结介绍计数器是一种常见的应用,广泛应用于各个领域。
在本次实验中,我们对计数器的应用进行了研究和总结。
本文将对实验的目的、实验过程、实验结果以及对计数器应用的总结进行详细阐述。
实验目的本次实验的目的是通过研究计数器的应用,探索其在实际生活和工程中的应用价值。
我们希望能够深入了解计数器的原理和相关知识,并通过实验验证计数器在不同场景下的应用效果。
实验过程1.确定实验步骤:我们首先确定了实验步骤,包括材料准备、实验环境搭建、实验操作等。
2.材料准备:我们准备了一台计算机、一块开发板、若干导线和一个计数器模块作为实验所需材料。
3.实验操作:我们按照设定的实验步骤进行操作,将计数器模块与开发板进行连接,并通过编程的方式设置计数器的初始值和计数方式。
4.实验观察:在实验过程中,我们观察了计数器模块的工作状态,并记录相关数据。
5.数据分析:根据实验获得的数据,我们进行了详细的数据分析和处理,得出了一些结论。
实验结果通过本次实验,我们获得了以下实验结果:1.计数器模块能够准确地记录计数次数,并且可以根据设置的计数方式进行自动计数。
2.不同的计数方式对计数器的性能影响较大,有些计数方式可能会导致计数器出现误差。
3.计数器模块的精度与其技术规格有关,选择合适的计数器模块可以提高计数器的性能。
计数器应用总结计数器在生活和工程中有着广泛的应用。
以下是对计数器应用的总结:1.计步器:计步器是计数器的一个常见应用,用于记录行走步数。
可以通过计步器来监控日常运动量,帮助人们进行健康管理。
2.生产计数:在生产线上,可以使用计数器来记录生产数量,帮助工厂管理生产进度和产品质量。
3.交通流量统计:计数器可以用于统计道路上的车辆流量,为交通管理提供数据支持,帮助进行交通规划和拥堵预测。
4.频率计数:计数器可以用于测量信号的频率,广泛应用于电子设备测试和通信领域。
5.时间测量:计数器也可以用于测量时间,如秒表和倒计时器等,广泛应用于运动比赛和实验室实验等场景。
实验七小规模SSI 计数器及其应用一、实验目的1. 熟悉触发器的逻辑功能。
2. 掌握小规模时序逻辑电路的设计方法、安装及调试。
3. 学会用状态转换表、状态转换图和时序图来描述时序逻辑电路的逻辑功能。
二、实验器件1. 数字信源状态分析实验箱。
2. 74LS00、 74LS20、 74LS74、 74LS112。
3. 双踪示波器、数字万用表。
三、实验原理1、SSI 时序逻辑电路设计原则和步骤:SSI 时序逻辑电路设计原则是:当选用小规模集成电路时,所用的触发器和逻辑门电路的数目应最少,而且触发器和逻辑门电路输入端数目也应为最少,所设计出的逻辑电路应力求最简,并尽量采用同步系统。
同步时序电路设计步骤如下:(1) 根据设计要求,画出状态图和状态表。
(2) 状态编码。
把状态表中各个字符表示的状态规定一个二进制代码,并使代码与各触发器的状态相对应。
(3) 选定触发器的类型。
不同逻辑功能的触发器驱动方式不同,所以用不同类型触发器设计出的电路也不同。
因此,在设计具体电路前必须根据需要选定触发器的类型。
(4) 根据代码形式的状态表和所选用的触发器直接写出输出方程。
或者根据状态表画出每个输出的卡诺图,写出输出方程。
(5) 对照所选触发器的状态方程,画出逻辑电路图。
(6) 检查设计的电路能否自启动。
四、实验内容1.试用 D 触发器和门电路设计一个四位扭环形计数器,并能自启动。
状态转换图如图 10 所示:图 10四位扭环形计数器状态转换图状态转移表为:表 9 四位扭环形计数器状态转移表根据状态转移表画出卡诺图,并确定状态转移方程:图11 四位扭环形计数器卡诺图据此逻辑电路图如下:U1A74LS74N1D21Q5~1Q6~1CLR11CLK 3~1PR4U1B74LS74N2D122Q9~2Q8~2CLR 132CLK 11~2PR10U2A74LS74N1D21Q5~1Q6~1CLR 11CLK 3~1PR4U2B74LS74N2D122Q9~2Q8~2CLR132CLK 11~2PR10V110kHz 5VU4A7408NVCC5.0VU3A 7432NXLA1C Q T1F图 12 四位扭环形计数器逻辑电路图由图12四位扭环形计数器逻辑电路图可得仿真结果如下图:图13 四位扭环形计数器仿真结果由图12四位扭环形计数器逻辑电路图和图13四位扭环形计数器仿真结果可得:电路可以自启动。
一、实验目的1. 理解计数器的基本原理和功能。
2. 掌握使用集成触发器构成计数器的方法。
3. 熟悉中规模集成计数器的使用及功能测试方法。
4. 了解计数器在数字系统中的应用。
二、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS004. 模拟示波器5. 逻辑分析仪6. 电源三、实验原理计数器是一种用于统计输入脉冲个数的逻辑电路,广泛应用于数字系统中。
计数器不仅可以实现计数功能,还可以用于定时控制、分频、数字运算等。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制计数器、十进制计数器、任意进制计数器。
2. 触发器翻转方式:同步计数器、异步计数器。
3. 计数功能:加法计数器、减法计数器、可逆计数器。
本实验采用74LS192同步十进制可逆计数器和74LS00四与门组成计数器电路。
四、实验内容及步骤1. 搭建实验电路:- 将74LS192的时钟输入端CP、复位端R、置数端S、计数输出端Q0-Q3分别与74LS00的输入端相连。
- 将74LS192的时钟输入端CP接至实验箱的时钟信号输出端。
- 将74LS192的复位端R和置数端S接至实验箱的控制信号输出端。
- 将74LS192的计数输出端Q0-Q3分别连接至逻辑分析仪的输入端。
2. 功能测试:- 测试计数器的计数功能:观察逻辑分析仪显示的计数输出波形,验证计数器能否实现计数功能。
- 测试计数器的复位功能:通过控制实验箱的控制信号,观察逻辑分析仪显示的计数输出波形,验证计数器能否实现复位功能。
- 测试计数器的置数功能:通过控制实验箱的控制信号,观察逻辑分析仪显示的计数输出波形,验证计数器能否实现置数功能。
3. 计数器应用:- 利用计数器实现定时功能:将计数器的计数输出端Q0-Q3分别连接至74LS00的输入端,通过组合逻辑电路实现定时功能。
- 利用计数器实现分频功能:将计数器的计数输出端Q0-Q3分别连接至74LS00的输入端,通过组合逻辑电路实现分频功能。
实验七、计数器
一、实验目的
1、掌握计数器74LS162的功能;
2、掌握计数器的级联方法;
3、熟悉任意模计数器的构成方法;
4、熟悉数码管的使用。
二、实验说明
计数器器件是应用较广的器件之一。
它有很多型号,各自完成不同的功能,使用中根据不同的需要选用。
本实验选用74LS162做实验用器件。
74LS162是十进制BCD同步计数器。
Clock是时钟输入端,上升沿触发计数器翻转。
允许端P和T都为高电平时允许计数,允许端T为低时禁止进位(Carry)产生。
同步预置端Load加低电平时,在下一个时钟的上升沿将计数器置为预置数据端的值。
清除端Clear为同步清除,低电平有效,在下一个时钟的上升沿将计数器复位为0。
在计数值等于9时,进位位Carry为高,脉宽是一个时钟周期,可用于级联。
三、实验所用仪器和芯片
1、同步4位BCD计数器74LS162 2片
2、二输入四与非门74LS00 1片
3、TEC-5(实验系统 1台
4、示波器 1台
四、实验内容
1、用1片74LS162和1片74LS00采用复位法(反馈清零法)构造一个模7计数器。
用单脉冲做计数时钟,观测计数状态,并记录。
用连续脉冲(50KHz)做计数时钟,观测并记录Qd,Qc,Qb,Qa的波形。
2、用1片74LS162和1片74LS00采用置位法(同步预置法)构造一个模7计数器。
用单脉冲做计数时钟,观测计数状态,并记录。
用连续脉冲(50KHz)做计数时钟,观测并记录Qd,Qc,Qb,Qa的波形。
*3、用2片74LS162和1片74LS00构成一个模60计数器。
2片74LS162的Qd,Qc,Qb,Qa分别接两个数码管的D,C,B,A。
用单脉冲做计数时钟,观测数码管数字变化,检验设计和接线是否正确。
五、实验报告要求
1、画出复位法构成的模7计数器的电路图;写出单脉冲作计数脉冲时,QD,Qd,Qc,Qb,Qa的状态转移表。
用连续脉冲(50KHz)做计数时钟,观测并记录Qd,Qc,Qb,Qa的波形。
2、画出置位法构成的模7计数器的电路图;写出单脉冲作计数脉冲时, QD, Qd, Qc, Qb, Qa的状态转移表。
用连续脉冲(50KHz)做计数时钟,观测并记录Qd,Qc,Qb,Qa的波形。
*3、画出模60计数器接线图。