(一)线性变换的基本性质
- 格式:ppt
- 大小:125.50 KB
- 文档页数:7
§2.2线性变换的基本性质教学目标:一、知识与技能:会证明定理1和定理2;理解矩阵变换把平面上的直线变成直线,即)(21βλαλ+A =βλαλA A 21+二、方法与过程分析可逆的线性变换将直线变成直线,平行四边形变成平行四边形这一结论,得到定理1和定理 2的证明,寻求线性变换在向量上的作用等式。
三、情感、态度与价值观感受数学活动充满探索性和创造性,激发学生乐于探究的热情。
增强学生的符号意识,培养学生的逻辑推理能力。
教学重点:定理的探究及证明 教学难点:定理的探究 教学过程 一、复习引入: 1、基本概念(1)二阶矩阵:由四个数a ,b ,c ,d 排成的正方形数表⎪⎪⎭⎫⎝⎛d c b a 称为二阶矩阵。
特别地,称二阶矩阵⎪⎪⎭⎫⎝⎛0000为零矩阵,简记为0。
称二阶矩阵⎪⎪⎭⎫⎝⎛1001为二阶单位矩阵,记为2E 。
(2)向量:向量(y x ,)是一对有序数对,y x ,叫做它的两个分量,且称⎪⎪⎭⎫⎝⎛y x 为列向量,(y x ,)为行向量。
同时,向量、点以及有序实数对三者不加区别。
2、败类特殊线性变换及其二阶矩阵 (1)线性变换在平面直角坐标系中,把形如⎩⎨⎧+=+=dycx y by ax x ``(其中a ,b ,c ,d 为常数)的几何变换叫做线性变换。
(2)旋转变换坐标公式为⎩⎨⎧+=-=ααααcos sin sin cos ``y x y y x x ,变换对应的矩阵为⎪⎪⎭⎫⎝⎛-ααααcos sin sin cos (3)反射变换①关于x 的反射变换坐标公式为⎩⎨⎧-==yy x x ``对应的二阶矩阵为⎪⎪⎭⎫ ⎝⎛-1001; ②关于y 的反射变换坐标公式为⎩⎨⎧=-=y y x x ``对应的二阶矩阵为⎪⎪⎭⎫⎝⎛-1001; ③关于x y =的反射变换坐标公式为⎩⎨⎧==x y y x ``对应的二阶矩阵为⎪⎪⎭⎫⎝⎛0110; (4)伸缩变换坐标公式为⎩⎨⎧==yk y x k x 2`1`对应的二阶矩阵为⎪⎪⎭⎫⎝⎛210k k ; (5)投影变换①投影在x 上的变换坐标公式为⎩⎨⎧==0``y x x 对应的二阶矩阵为⎪⎪⎭⎫⎝⎛0001; ②投影在y 上的变换坐标公式为⎩⎨⎧==yy x ``0对应的二阶矩阵为⎪⎪⎭⎫⎝⎛1000 (6)切变变换①平行于x 轴的切变变换坐标公式为⎩⎨⎧=+=y y sy x x ``对应的二阶矩阵为⎪⎪⎭⎫ ⎝⎛101s ⎪⎪⎭⎫⎝⎛101s ②平行于y 轴的切变变换坐标公式为⎩⎨⎧+==y sx y x x ``对应的二阶矩阵为⎪⎪⎭⎫⎝⎛101s 二、新课讲解定理1 设A =⎪⎪⎭⎫⎝⎛d c b a ,⎪⎪⎭⎫ ⎝⎛=111y x X ,⎪⎪⎭⎫ ⎝⎛=222y x X ,t ,k 是实数。
线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。
2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。
根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。
二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。
设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。
线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。
由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。
另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。
线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。
因此,矩阵表示是研究线性变换的重要工具。
三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。
设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。
这里的λ就是T的特征值,v就是T的特征向量。