线性变换的定义
- 格式:doc
- 大小:171.00 KB
- 文档页数:3
第 7章 线性变换知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=; 注:V 的线性变换就是其保持向量的加法与数量乘法的变换;2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈;性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关;性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关;注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s s s s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B ;4. 线性变换举例1设V 是数域P 上的任一线性空间;零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈;幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m 0,就称σ为幂零变换;幂等变换:设σ是数域P 上的线性空间V 的线性变换,如果2σσ=,就称σ为幂等变换;2nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 3[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈; 4n nV P⨯=,()ij A a =是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈;二.线性变换的运算、矩阵 1. 加法、乘法、数量乘法1 定义: 设V 是数域P 上的线性空间,,στ是V 的两个线性变换,定义它们的和στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都是V 的线性变换;2()L V ={σσ为V 的线性变换},按线性变换的加法和数乘运算做成数域P 上的维线性空间;2. 线性变换的矩阵1定义:设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα是V 的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++那么称矩阵112111222212n n nnnn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭为线性变换σ在基12,,,n ααα下的矩阵;此时:()()()()()()121212,,,,,,,n n n A σααασασασαααα==2线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n ααα是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设它们在12,,,n ααα下的矩阵分别为A,B ;1():n n f L V P ⨯→,A σ是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅;2σ可逆⇔A 可逆3①στ+、στ与-σ在基12,,,n ααα下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n ααα下的矩阵为kA ;③ 若σ为可逆线性变换,则1σ-在基12,,,n ααα下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++ε为V 的恒等变换在基12,,,n ααα下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++;三.特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量1矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式;注: 1若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-nn n A A2 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程;2 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值根,设0λ∈C 是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量;3求法:1求()λλ=-A n f E A 在复数域上的所有根12λλλn ,,,重根按重数计算;2对()1λ=k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++k k k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为不全为零的任意常数复数;4 重要结论:1设0λ∈C 是A 的特征值,0X 是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式;① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还是可逆矩阵,那么1λ与λA分别为1-A 和*A 的特征值,0X 为1-A 的属于特征值1λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλn ,,,是矩阵A 的全部特征值,那么()()()12λλλn g ,g ,,g 就是()g A 的全部特征值,如果A 还是可逆矩阵,则12111λλλn,,,为1-A 的全部特征值,12λλλnA A A,,,为*A 的全部特征值;2若12λλλn,,,是矩阵A的全部特征值,那么()12tr λλλ=+++n A ,12λλλ=n A ;2. 线性变换的特征值与特征向量1定义:设σ是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量;2线性变换的特征多项式设σ是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n ααα,设σ在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式;3求法:设σ是数域P 上的n 维线性空间V 的线性变换;1取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;2求()σλλ=-n f E A 在P 中的所有根12λλλm ,,,0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值;3若0>m ,对()1λ=k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++k k n k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为P 中不全为零的任意常数;3. 矩阵相似1定义:设A,B 是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为A B ;2性质:1矩阵相似是等价关系,即:设A,B,C 都是n 级方阵,那么:①A A ; ② 若A B ,那么B A ;③ 若A B 且B C ,则A C ;2若AB ,那么()()λλλλ=-==-A n B n f E A f E B ,因此矩阵A 与矩阵B 有相同的特征值,相同的迹()()tr tr =A B ,相同的行列式=A B ;3两个实对称阵相似⇔它们有相同的特征值;3有限维线性空间上的线性变换在不同基底下的矩阵彼此相似;4若1-=T AT B ,那么1-+=∀∈kkB T A T ,k Z ;4. 线性变换与矩阵可对角化 1矩阵可对角化1设A 是n 级方阵,如果存在n 级可逆矩阵T ,使得1-T AT 为对角阵,则称A 可对角化;2n 级方阵A 可对角化⇔A 有n 个线性无关特征向量; 3如果n 级方阵A 有n 个不同的特征值,则A 可对角化; 4设12λλλk ,,,是n 级方阵A 的所有不同的特征值,()()()()1212λλλλλλλλ=-=---klll A n k f E A称()12=i l i ,,,k 为λi 的代数重数;称=-i s n 秩()()12λ-=i n E A i ,,,k 为λi 的几何重数;()12≤=i i s l i ,,,k ;n 级方阵A 可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;注:1. 设齐次线性方程组()0λ-=i n E A X 的解空间为i W ,则()dim =i i s W2. 称{}λααλα=∈=i ni V CA 为n 级方阵A 的属于特征值λi 的特征子空间,那么()dim λ=i i s V2线性变换可对角化1 设σ是数域P 上的n 维线性空间V 的线性变换,如果存在V 的一组基,使得σ 在该基下的矩阵为对角阵,就称σ可对角化;2数域P 上的n 维线性空间V 的线性变换σ可对角化⇔σ有n 个线性无关特征向量; 3设σ是数域P 上的n 维线性空间V 的线性变换,如果σ有n 个不同的特征值,则σ可对角化;4设σ是数域P 上的n 维线性空间V 的线性变换,σ在V 的一组基下的矩阵为A , 设12λλλk ,,,是n 级方阵A 的所有不同的特征值;① 若12λλλ∈k ,,,P ,那么:σ可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;② 若12λλλk ,,,不全在数域P 中,则σ不可对角化;注:λi 的几何重数 =()dim λi V ,其中(){}λασαλα=∈=i iV V 为σ的属于特征值λi 的特征子空间;四.线性变换的值域与核1.定义:设σ是数域P 上的线性空间V 的线性变换,将()(){}100V σασα-=∈=,(){}V V σσαα=∈分别称为线性变换σ的核与值域()10σ-与V σ也分别记为ker σ与Im σ;2.线性变换的秩与零度: V σ与()10σ-都是V 的子空间,将()dim V σ 与()()1dim 0σ-分别称为σ的秩和零度;3. 有限维线性空间的线性变换的值域与核设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα为V 的一组基,σ 在该基下的矩阵为A ,=r 秩()A ,1122n n a a a V αααα=+++∈;1()1210n a a a ασ-⎛⎫ ⎪ ⎪∈⇔ ⎪ ⎪⎝⎭是齐次线性方程组0=AX 的解;2若12,,,ηηη-n r 是0=AX 的一个基础解系,那么12,,,γγγ-n r 其中()()12,,,1,2,,γαααη==-k n k k n r 就是()10σ-的一组基,于是:()()1dim0n r σ-=-()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈因此σ的秩和零度为n r -; 3()()()()12n V L,,,σσασασα=于是()()()12σασασαn ,,,的一个极大线性无关组就是V σ的一组基,而()()()12σασασαn ,,,的秩等于秩()A =r ,所以()dim V r σ=,即σ的秩为秩()A =r ; 4()()()1dim dim 0V n σσ-+=;3. 求法:设V 是数域P 上的n 维线性空间,σ是V 的线性变换; 1()10σ-的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 解齐次线性方程组0=AX ,得其一个基础解系12,,,ηηη-n r =r 秩()A ;③ 令()()12,,,1,2,,γαααη==-k n k k n r ,得()10σ-的一组基12,,,γγγ-n r ,()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈2V σ的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 设矩阵A 的列向量组为12,,,n ηηη,求出12,,,n ηηη的一个极大线性无关组12,,,r i i i ηηη就得到()()()12σασασαn ,,,的一个极大线性无关组()()()12σασασαri i i ,,,,()()()12σασασαri i i ,,,就是V σ的一组基;()()()()12ri i i V L ,,,σσασασα=()()(){}112212σασασα=+++∈r r r i i i i i i i i i l l l l ,l ,,l P五.不变子空间1. 定义:设σ是数域P 上的线性空间V 的线性变换,W 是V 的子空间,如果对α∀∈W ,都有()σα∈W 即()σ⊆W W ,就称W 是σ的不变子空间,也称σ-子空间; 2. 设V 是数域P 上的线性空间,那么{}0与V 都是V 的任一线性变换的不变子空间; 3. 设σ是数域P 上的线性空间V 的线性变换,λ是σ的任意一个特征值,那么σ的特征子空间(){}λασαλα=∈=V V 都是σ的不变子空间;4. 线性变换的循环子空间:设σ是数域P 上的0n >维线性空间V 的线性变换,任取0V α≠∈,必存在正整数m ,使得()()1m ,,,ασασα-线性无关,而()()m ,,,ασασα线性相关,令()()()1m W L ,,,ασασα-=,则W 是σ的不变子空间,称W 为σ的循环子空间;5. 设V 是数域P 上的n 维线性空间,σ是V 的线性变换,W 是σ的不变子空间,()0<dim =<W m n ,取W 的一组基12,,,αααm ,将其扩充为V 的一组基121,,,,,,ααααα+m m n ,那么σ在该基下的矩阵为1230⎛⎫⎪⎝⎭A A A ,其中1A 为σW在W 的基12,,,αααm 下的矩阵;六.若尔当 Jordan 标准形1.若尔当块与若尔当形矩阵: 1若尔当块:形式为()0000100000100001t tJ ,t λλλλλ⨯⎛⎫⎪ ⎪⎪=⎪⎪ ⎪⎝⎭ 的矩阵称为若尔当块,其中λ为复数;2若尔当形矩阵:由若干个若尔当块组成的准对角阵称为若尔当形矩阵,其一般形状如:12s A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭其中:111i ii ii ii k k A λλλλ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,且12s ,,,λλλ中有些可以相等;2. 复数域上有限维线性空间上的线性变换与复方阵1设σ是复数域C 上的0n >维线性空间V 的任意一个线性变换,那么必存在V 的一组基,使得σ在该基下的矩阵为若尔当形矩阵;2每个n 级复矩阵都与一个若尔当形矩阵形矩阵相似;3. 设σ是复数域上的0n >维线性空间V 的线性变换,那么σ幂零⇔σ的特征值都为零;。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。
第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。
第七章 线 性 变 换
§ 1 线性变换的定义
上一章我们看到,数域 P 上任意一个 n 维线性空间都与n P 同构,因之,有限维线性空间的同构可以认为是完全清楚了.线性空间是某一类事物从量的方面的一个抽象.我们认识客观事物,固然要弄清它们单个的和总体的性质,但是更重要的是研究它们之间的各种各样的联系.在线性空间中,事物之间的联系就反映为线性空间的映射.线性空间到自身的映射通常称为的一个变换.这一章中要讨论的线性变换就是最简单的,同时也可以认为是最基本的一种变换,正如线性函数是最简单的和最基本的函数一样. 线性变换是代数的一个主要研究对象.
下面如果不特别声明,所考虑的都是某一固定的数域P 上的线性空间.
定义 1 线性空间 V 的一个变换 A 称为线性变换,如果对于V 中的任意的元素αβ,和数域中任意数k ,都有
()()A A αβαβ+=+
()()A k kA αα= (1)
以后我们一般用黑体答谢拉丁字 A , B ,…代表 V 的变换,()A k α或()A α代表 元素α在变换下的象.
定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量乘法. 问题1: 线性变换与线性同构有什么异同?
下面我们来看几个简单的例子 ,它们表明线性变换这个概念是有丰富的内容的. 例 1 平面上的向量构成实数域上的二维线性空间 . 把平面围绕坐标原点按反时针方向旋转θ角,就是一个线性变换,我们用I θ表示。
如果平面上一个向量α在直角坐标系下的坐标是(,)x y ,那么象I θα()的坐标,即旋转θ角之后的坐标是(,)x y ''按照公式
cos sin sin cos x x y y θθθ
θ'-⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭ 来计算的.同样地,空间中绕轴的旋转也是一个线性变换.
例 2 设α是几何空间中一固定的非零向量,把每个向量ξ变到它在α上的内映射的变换也是一个线性变换,以α∏表示它.用公式表示就是
(,)()(,)
ααξξααα∏= 这里(,)αξ表示内积.
例 3 线性空间 V 中的恒等变换或称单位变换 E ,即
()E αα= ()V α∈
以及零变换0,即
0()0α= ()V α∈
都是线性变换.
例 4 设V 是数域P 上的线性空间,k 是P 中某个数 ,定义V 的变换如下:
,k αα→ ()V α∈
不难证明,这是一个线性变换,称为由数 k 决定的数乘变换,可用k 表示.显然,当k=1时,我们便得恒等变换,当k=0时,便得零变换.
例 5 在线性空间[]P x 或者[]n P x 中,求微商是一个线性变换.这个变换通常用D 代表,即11220r r k k k ααα+++=,
(())()D f x f x '=
例 6 定义在闭区间[a,b ]上的全体连续函数组成实数域上一线性空间,以C (a,b )代表.在这个空间中,变换
(())()x
a J f x f t dt =⎰ 是一线性变换 .
例7 在线性空间V 中,定义0,.a a a V σ=∀∈其中0a 是V 中一个固定向量,试问σ是否为线性变换?
解 当00a ≠时,.V αβ∀∈则有
00(),(),.σαασβασαβα==0及(+)=
但
0()()2().σασβασαβ+=≠+
因此当00a ≠时,α不是线性变换。
若00a =则有()()()0.σαβσασβ+=+=
()()0.k k σασα==
故当00α=时,σ是线性变换(此时σ为零变换)。
不难直接从定义推出线性变换的以下简单性质:
1. 设 A 是V 的线性变换,则(0)0,()().A A A αα=-=-
这是因为
(0)(0)0()0,A A A αα===
()((1))(1)()().A A A A αααα-=-=-=-
2. 线性变换保持线性组合与线性关系式不变.换句话说,如果β是12
,,r ααα 的线性组合:
1122r r k k k βααα=+++
那么经过线性变换A 之后, ()A β 是 12(),(),
,()r A A A ααα 同样的线性组合:
1122()()()()r r A k A k A k A βααα=+++
又如果12,,r ααα 之间有一线性关系式 11220r r k k k ααα++
+= 那么它们的象之间也有同样的关系
1122()()()0r r k A k A k A ααα+++=
以上两点,根据定义不难验证,由此即得
3. 线性变换把线性性相关的向量组变成线性相关的向量组。
但应该注意,3的逆是不对的,线性变换可能把线性无关的向量组也变成线性相关的向量组.例如零变换就是这样。
例8 设 12,,,s ααα 及 12,,,s βββ是线性空间V 中两组等价的向量组,又
()L V σ∈,试证:12(),(),
,()s σασασα与12(),(),,(),s σβσβσβ也是两个等价的向量组。
证明 因为 12,,,s ααα与12,,
,s βββ可以互相线性表出。
记 11221(1,2,
)s i i i is s ij j j k k k k i s αββββ==+++==∑则由线性变换性质(3)可知:
11221()()()()()(1,2,
,)s i i i is s ij j j k k k k i s σασβσβσβσβ==+++==∑
上式说明了向量组 12(),(),
,()s σασασα可由向量组12(),(),,(),s σβσβσβ线性表出。
同理可证, 12(),(),,(),s σβσβσβ可由12(),(),,()s σασασα线性表出。
因此12(),(),
,()s σασασα与向量组12(),(),,(),s σβσβσβ等价。