第七章线性变换.
- 格式:docx
- 大小:12.18 KB
- 文档页数:4
第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就是其保持向量的加法与数量乘法的变换。
2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。
性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。
性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。
注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A ),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
第七章 线性变换§1 线性变换的定义 §2 线性变换的运算教学目的:变换简单地讲就是映射,对线性变换的学习是本章的基础。
教学重点:线性变换的性质,逆变换。
课时:4。
教学方法:讲练结合。
教学内容:一、定义:对P k V ∈∀∈∀,,βα,有)()()()()(ααβαβαkA k A A A A =⋅+=+则称V V A →:为V 上的线性变换。
二、几个特殊的线性变换:1、恒等(单位)变换E :V E ∈∀=ααα,)(。
2、零变换0:V ∈∀=αα,0)(0。
3、数乘变换k :V k k ∈∀=ααα,)(。
三、性质:1、)()(,0)0(ααA A A -=-=。
2、若rr k k k αααβ+++= 2211,则)()()()(2211r r A k A k A k A αααβ+++= 。
3 若r ααα,,,21 线性相关,则)(,),(),(21r A A A ααα 也线性相关。
练习:323P 1。
四、记{}的线性变换是V A A V M =)(1 定义乘法:对()()()()()ααB A AB V M B A =∈∀,,可证()V M AB ∈,设()VM C ∈有)()(BC A C AB =。
2、定义加法:()()()()αααB A B A +=+,可证)(V M B A ∈+。
则()V M 也是P 上的线性空间。
(若又有()()CABA A C B AC AB C B A +=++=+,,则()V M 作成一个环)。
五、逆变换:()V M A ∈若()V M B ∈∃,使EBA AB ==,则称A 是可逆的线性变换,而B 称为A 的逆变换,记为1-=AB ,则1-A 也是可逆的线性变换。
特别地:()EA A n A AA A n ==0,,个 ;()()0,,,≥==+n m AAA A A mnnmn mnm ;()()+--∈=Z n AAnn,1。
第七章线性变换
计划课时:24 学时.(P 307—334)
§7.1 线性变换的定义及性质( 2 学时)
教学目的及要求:理解线性变换的定义,掌握线性变换的性质
教学重点、难点:线性变换的定义及线性变换的性质
本节内容可分为下面的两个问题讲授.
一. 线性变换的定义(P307)
注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。
二. 线性变换的性质
定理7.1.1 (P309)
定理7.1.2 (P309)
推论7.1.3 (P310)
注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。
2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。
作业:习题七P330 1 ,2, 3.
§7.2 线性变换的运算( 4 学时)
教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件
本节内容分为下面四个问题讲授:
一. 加法运算
定义 1 (P310)
注意:+ 是V的线性变换.
二. 数乘运算
定义 2 (P311)
显然k 也是V的一个线性变换.
定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间.
三. 乘法运算
(1). 乘法运算
定义 3 (P311-312)
注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换.
(2). 线性变换的方幂
四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读
内容).
作业:P330 习题七4, 5.
§7.3 线性变换的矩阵( 6 学时)
教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、
同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理
论。
教学重点、难点:
1. 线性变换关于一个基的矩阵的定义。
2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。
本节内容分为下面四个问题讲授:
一.线性变换关于基的矩阵
定义 ( P316) 。
注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与
它对应.
例 1 ( P316 )
注意:一个线性变换在不同基下的矩阵通常是不同的.
例 2 ( P317) 例 3
( P317)
二.与( )关于同一个基的坐标之间的关系. 定理7.3.1
例 4 ( P318 )
三• L(V)与M(F)的同构
定理7.3.2 (P320)
定理7.3.3 (P320)
注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。
2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。
同构是高等代数课程的一个基本概念。
3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求
逆变换的方法。
四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321).
作业:P331 习题七6,9,12,17.
7.4 不变子空间( 4 学时)
教学目的及要求:理解不变子空间、线性变换的值域与核、线性变换的秩与零度的定义及相关理论,掌握利用不变子空间化简线性变换的矩阵的方法、求线性变换的值域与核的方法
教学重点、难点:
1. 利用不变子空间化简线性变换的矩阵的方法、线性变换的值域与核的概念
2. 线性变换值域与核的计算
本节内容分为下面三个问题讲授:
一. 不变子空间的概念
定义 1 (P322)
定理7.4.1 (P323)
二. 利用不变子空间化简线性变换的矩阵
(1). 线性变换在不变子空间上的限制
定义 2 (P323)
(2). 不变子空间与简化线性变换的矩阵的关系
三. 线性变换的值域与核
定义 3 (P324)
定理7.4.2 (P324)
定理7.4.3 (P325)
定理7.4.4 (P325)
作业:P332-333 习题七19,21,23,24,25.
§7.5 线性变换的本征值和本征向量( 4 学时)教学目的及要求:理解线性变换本征值与本征向量的定义,掌握有限维向量空间的线性变换的本征值和本征向量与它的矩阵的特征值和特征向量的关系,掌握线性变换的可对角化的条件
教学重点、难点:本征值和本征向量的求法
本节内容分为下面三个问题讲授:
一. 本征值与本征向量的定义
定义1(本征值与本征向量)(P327).
例 1 (P 327)
例 2 (P 327)
例 3 (P 328)
注意:并不是每个线性变换都有本征值. 无限维向量空间的一个线性变换的本征值可能有无穷多个。
二. 本征值和本征向量的求法
定理7.5.1 (P329)
例 4 (P329 )
例 5 (P329 )
注意:1. 有限维向量空间的线性变换的本征值最多有有限个。
2. 有限维向量空间的线性变换的本征值和本征向量与它的矩阵的特征值和特征向量的区别与联系。
三. 线性变换的可对角化
定理7.5.2 (P330).
作业:P333 习题七27,28.
习题课(4 时)
补充题(P333-P334 ) 1 , 3 ,4,5,6,7.
作业:本章小结。