L型和方形补偿器补偿器力学计算
- 格式:docx
- 大小:36.93 KB
- 文档页数:3
热伸长量
△X(mm)管材的线膨胀系数α(mm/m.k)管道的计算长度L(m)输送介质温度t2(℃)管道安装时温度
t1(℃)
蒸汽表压(KPa)
27.300.01203560-5
65.100.012035150-5说明:
1、热水采暖管道尽量利用本身的转角来自然补偿,在自然补偿不足而必须安装伸缩器时,一般尽量采用方形伸缩器。
2、室内采暖总立管直线长度大于20m时,应考虑热补偿。
3、管道的热伸长量 △X=αL(t2-t1)
△X---管道的热伸长量(mm)
α ---管材的线胀系数(mm/m.k)
L ---计算管道长度 (m)
t2 ---输送热媒的温度 ℃
t1 ---管道安装时的温度 ℃
一般取-5℃,管道在地下室或室内时取-0℃,室外架空安装时取采暖室外计算温度。
4、垂直双管系统、闭合管与立管同轴垂直单管系统的散热器立管,长度≤20m时,可在立管中间设固定卡。
固定卡以下长度>10m时的立管管连接,弯头宜采用热煨制作。
5、方形补偿器宜布置在两固定支架的中点,偏离时,不得大于固定支架跨距的0.6倍。
6、波纹管补偿器和套筒补偿器,应配置导向支架。
卡。
固定卡以下长度>10m时的立管,应以三个弯头与干。
方形补偿器的补偿能力热补偿器有弯管补偿器、套管式补偿器、球形补偿器及波纹补偿器四大类。
(1)弯管补偿器。
弯管补偿器有方形和a形两种,根据臂长和宽度的不同分为I、II、Ⅲ、IV型,如图3 - 22所示。
通常采用方形补偿器较多,方形补偿器一般用无缝钢管械制而成。
对于尺寸较小的方形补偿器,应用整根无缝钢管蜮制,对于尺寸较大的方形补偿器,可由两根或三根管子热弯而成,其焊口应设在垂直臂的中间位置。
方形补偿器具有构造简单十安装方便、热补偿量大、工作可靠等优点,但其占地面积大、水阻力大。
管道热伸长计算式为(3 -1)式中:△L为管道热伸长量,mm;α为管材的线膨胀系数,mm/m℃;L为管道计算长度,m;t2为热媒温度,℃;t1为管道安装时温度,℃。
为了减少补偿器的膨胀应力:提高补偿能力,在方形补偿器安装时应进行预拉伸,拉伸长度应接设计要求,无要求时为其伸长量的1/2,预拉伸的焊口应选在距补偿器弯曲起点2 ~ 2.5m为宜。
预拉伸方法可选用千斤顶或撑拉器将补偿器的两臂撑开,还可以用拉管器进行冷拉。
采用千斤顶顶撑时,. 如图3 -23所示,拉伸前将两端固定支架焊好,补偿器一端直管与方形补偿器焊好,补偿器另一端直管与连接末端之间预留其伸长量的1/2,用千斤顶进行拉伸。
拉伸时,千斤顶横放于方形补偿器两臂间,加好支撑和垫块,起动千斤顶撑开两臂使预拉焊口靠拢至要求间隙,焊口找正焊好。
采用拉管器冷拉时,如图3-24所示,拉伸前将两端固定支架焊好,补偿器两端直管与连接末端之间预留其伸长量的1/4,用拉管器进行拉伸。
拉伸时,将拉管器的法兰管卡卡在被拉焊口两端。
通过调整穿在两个法兰管卡之间的双头长螺栓,使预拉焊口靠拢至要求间隙,焊口找正焊好。
两侧冷拉可同时进行,也可分别操作。
方形补偿器一般安装在两固定支架中间。
方形补偿器水平安装时,应与管道的坡度、坡向一致;垂直安装时,高点应设排气阀,低点应设泄水装置。
补偿器安装就位时,起吊点应为3个,以保持补偿器的平衡受力,以防变形。
方形补偿器的补偿能力热补偿器有弯管补偿器、套管式补偿器、球形补偿器及波纹补偿器四大类。
(1)弯管补偿器。
弯管补偿器有方形和a形两种,根据臂长和宽度的不同分为I、II、Ⅲ、IV型,如图3 - 22所示。
通常采用方形补偿器较多,方形补偿器一般用无缝钢管械制而成。
对于尺寸较小的方形补偿器,应用整根无缝钢管蜮制,对于尺寸较大的方形补偿器,可由两根或三根管子热弯而成,其焊口应设在垂直臂的中间位置。
方形补偿器具有构造简单十安装方便、热补偿量大、工作可靠等优点,但其占地面积大、水阻力大。
管道热伸长计算式为(3 -1)式中:△L为管道热伸长量,mm;α为管材的线膨胀系数,mm/m℃;L为管道计算长度,m;t2为热媒温度,℃;t1为管道安装时温度,℃。
为了减少补偿器的膨胀应力:提高补偿能力,在方形补偿器安装时应进行预拉伸,拉伸长度应接设计要求,无要求时为其伸长量的1/2,预拉伸的焊口应选在距补偿器弯曲起点2 ~ 2.5m为宜。
预拉伸方法可选用千斤顶或撑拉器将补偿器的两臂撑开,还可以用拉管器进行冷拉。
采用千斤顶顶撑时,. 如图3 -23所示,拉伸前将两端固定支架焊好,补偿器一端直管与方形补偿器焊好,补偿器另一端直管与连接末端之间预留其伸长量的1/2,用千斤顶进行拉伸。
拉伸时,千斤顶横放于方形补偿器两臂间,加好支撑和垫块,起动千斤顶撑开两臂使预拉焊口靠拢至要求间隙,焊口找正焊好。
采用拉管器冷拉时,如图3-24所示,拉伸前将两端固定支架焊好,补偿器两端直管与连接末端之间预留其伸长量的1/4,用拉管器进行拉伸。
拉伸时,将拉管器的法兰管卡卡在被拉焊口两端。
通过调整穿在两个法兰管卡之间的双头长螺栓,使预拉焊口靠拢至要求间隙,焊口找正焊好。
两侧冷拉可同时进行,也可分别操作。
方形补偿器一般安装在两固定支架中间。
方形补偿器水平安装时,应与管道的坡度、坡向一致;垂直安装时,高点应设排气阀,低点应设泄水装置。
补偿器安装就位时,起吊点应为3个,以保持补偿器的平衡受力,以防变形。
热力管道的补偿类型和方式热力管道的补偿方式有两种:自然补偿和补偿器补偿。
1.自然补偿自然补偿就是利用管道本身自然弯曲所具有的弹性,来吸收管道的热变形。
管道弹性,是指管道在应力作用下产生弹性变形,几何形状发生改变,应力消失后,又能恢复原状的能力.实践证明,当弯管角度大于30°时,能用作自然补偿,管子弯曲角度小于30°时,不能用作自然补偿。
自然补偿的管道长度一般为15~25m,弯曲应力бbw不应超过80MPa。
管道工程中常用的自然补偿有:L型补偿和Z型补偿.2.补偿器补偿热力管道自然补偿不能满足,应在管路上加设补偿器来补偿管道的热变形量。
补偿器是设置在管道上吸收管道热胀冷缩和其他位移的元件。
常用的补偿器有方形补偿器、波纹管补偿器、套筒补偿器和球形补偿器。
(1)方形补偿器。
方形补偿器是采用专门加工成U型的连续弯管来吸收管道热变形的元件。
这种补偿器是利用弯管的弹性来吸收管道的热变形,从其工作原理看,方形补偿器补偿属于管道弹性热补偿。
方形补偿器由水平臂、伸缩臂和自由臂构成.方形补偿器是由4个90°弯头组成,其优点是:制作简单,安装方便,热补偿量大工作安全可靠,一般不需要维修;缺点是:外形尺寸大,安装占用空间大,不太美观。
方形补偿器按其外形可分为Ⅰ型-标准式(c=2h),Ⅱ型-等边式(c=h),Ⅲ型-长臂式(c=0.5h),Ⅳ型-小顶式(c=0),其中Ⅱ型、Ⅲ型最为常用。
制作方形补偿器必须选用质量好的无缝钢管揻制而成,整个补偿器最好用一根管子揻成,如果制作大规格的补偿器也可用两根弯管或三根弯管焊制,方形补偿器不宜用冲压弯头焊制而成。
焊制方形补偿器的焊接点应放在外伸臂的中点处,因为此处的弯矩最小,严禁在补偿器的水平臂上焊接。
焊制方形补偿器时,当DN≤200mm时,焊缝与外伸臂垂直,当DN>200mm时,焊缝与轴线成45°角。
(2)波纹管补偿器。
波纹管补偿器又称波纹管膨胀节,由一个或几个波纹管及结构件组成,用来吸收由于热胀冷缩等原因引起的管道或设备尺寸变化的装置。
L型和方形补偿器补偿器计算L型补偿器和方形补偿器在结构上有一些区别。
L型补偿器通常是由两个不同长度的臂构成的,其中一个臂较长,另一个较短。
这两个臂的连接点处形成了一个90度的角。
方形补偿器则是由四条边构成的正方形或矩形形状。
补偿器的设计是基于热膨胀的原理。
当管道或电缆在使用过程中受到热膨胀时,补偿器可以沿着轴向移动,从而补偿由于热膨胀引起的长度变化。
这种移动可以减少或消除热膨胀产生的应力和位移。
在计算L型和方形补偿器的补偿量时,我们需要考虑几个因素。
首先是管道或电缆的长度变化。
这取决于管道或电缆的材料热膨胀系数和温度变化范围。
其次是补偿器的长度和形状。
补偿器的长度和形状决定了其可以提供的最大位移范围。
最后是补偿器的材料和弹性模量。
补偿器的材料和弹性模量会影响其承载能力和弹性恢复能力。
计算L型和方形补偿器的补偿量可以通过以下步骤进行:1.确定管道或电缆的热膨胀系数。
热膨胀系数可以根据材料的特性和温度范围进行确定。
根据热膨胀系数,可以计算出管道或电缆在温度变化时的长度变化量。
2.确定补偿器的长度和形状。
补偿器的长度和形状决定了其可以提供的位移范围。
一般来说,补偿器的长度越长,位移范围越大。
3.确定补偿器的材料和弹性模量。
补偿器的材料和弹性模量会影响其承载能力和弹性恢复能力。
这可以通过选择适当的材料和弹性模量来满足设计要求。
4.根据以上参数计算补偿器的补偿量。
补偿量可以通过补偿器位移量与管道或电缆长度变化量之间的关系来计算。
需要注意的是,计算补偿器的补偿量只是其中之一的设计考虑因素。
在实际应用中,还需要考虑许多其他因素,如补偿器的安装方式、受力分析、使用寿命等。
这些因素需要根据具体的应用情况进行综合考虑。
综上所述,L型和方形补偿器是一种用于补偿电缆或管道热膨胀引起的位移和应力的装置。
计算补偿器的补偿量需要考虑管道或电缆的长度变化、补偿器的长度和形状、材料和弹性模量等因素。
但需要注意的是,设计补偿器时还需要考虑其他因素,如安装方式、受力分析、使用寿命等。
方形补偿器计算方形补偿器是一种用于补偿机械系统的力学设备,常用于减少机械系统在运动过程中的振动和噪声。
在设计方形补偿器时,需要考虑到系统的质量、刚度、减震效果等因素。
本文将介绍方形补偿器的计算方法和一些实例分析。
首先,方形补偿器的计算方法需要考虑到系统的质量和刚度。
系统的质量可以通过摆动质量和槓臂长度来计算,而刚度可以通过选择材料和计算杆长来确定。
摆动质量的计算方法如下:m=M*L^2/l^2其中,m为摆动质量,M为系统质量,L为摆杆长度,l为杆长。
方形补偿器的刚度计算方法如下:k=E*A/l其中,k为刚度,E为弹性模量,A为截面积,l为杆长。
在进行计算时,需要根据实际的系统参数选择合适的值,以保证补偿器的有效性。
接下来,我们将通过一个实例来说明方形补偿器的计算方法。
假设我们需要设计一个方形补偿器来减少机械系统的振动和噪声。
已知系统的质量为100kg,摆杆长度为1m,杆长为3m。
杆材料的弹性模量为200GPa,截面积为100mm^2首先,根据以上参数,我们可以计算出摆动质量:m = M * L^2 / l^2 = 100 * 1^2 / 3^2 = 0.111kg其次,我们可以计算出方形补偿器的刚度:k=E*A/l=200*10^9*100*10^-6/3=6.67*10^9N/m最后,根据计算出的补偿器质量和刚度,我们可以进行实际的设计和安装,以减少机械系统的振动和噪声。
需要注意的是,方形补偿器的计算方法只是作为一种参考,实际的设计和安装还需要考虑到其他因素,如动力学效果和系统的稳定性等。
总结起来,方形补偿器的计算方法主要包括摆动质量和刚度的计算。
在实际的设计中,可以根据系统的参数和需求来确定补偿器的质量和刚度。
希望本文的介绍能够对方形补偿器的计算方法有所帮助。
补偿器的计算补偿器的计算解释:补偿管线因温度变化而伸长或缩短的配件,热力管线上所利用的主要有波形补偿器和波纹管两种。
一. 补偿器简介:补偿器习惯上也叫膨胀节,或伸缩节。
由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。
属于一种补偿元件。
利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。
也可用于降噪减振。
在现代工业中用途广泛。
二.补偿器作用:补偿器也称伸缩器、膨胀节、波纹补偿器。
补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用:1.补偿吸收管道轴向、横向、角向热变形。
2. 波纹补偿器伸缩量,方便阀门管道的安装与拆卸。
3.吸收设备振动,减少设备振动对管道的影响。
4.吸收地震、地陷对管道的变形量。
三.关于轴向型、横向型和角向型补偿器对管系及管架设计的要求(一)轴向型补偿器1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。
主固定管架要考虑波纹管静压推力及变形弹性力的作用。
推力计算公式如下:Fp=100*P*AFp-补偿器轴向压力推(N),A-对应于波纹平均直径的有效面积(cm2),P-此管段管道最高压力(MPa)。
轴向弹性力的计算公式如下:Fx=f*Kx*XFX-补偿器轴向弹性力(N),KX-补偿器轴向刚度(N/mm);f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。
管道除上述部位外,可设置中间固定管架。
中间固定管架可不考虑压力推力的作用。
2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。
3、固定管架和导向管架的分布推荐按下图配置。
补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算:LGmax-最大导向间距(m);E-管道材料弹性模量(N/cm2);i-tp 管道断面惯性矩(cm4);KX-补偿器轴向刚度(N/mm),X0-补偿额定位移量(mm)。
阐述管道方形补偿器的计算与安装方法热力管道常因管道内介质的温度与安装时环境温度的差异而产生伸缩。
而且因为热力管道本身工作温度的高低,也会促使管道的伸缩变形。
为了促使温度变形的释放和温度应力的消除,保证热力管道的可靠运行,必须根据热力管道的热伸长量及应力的计算合理地布置补偿装置或补偿器。
热力管道常用的补偿方式有两种:自然补偿装置和补偿器。
管道系统中弯曲部件的转角不大于150度时均可做为自然补偿装置,其特点是简单可靠。
下面就方形补偿器的计算和应用分别予以介绍。
1、方形补偿器的介绍方形补偿器通常用无缝钢管煨制或机制弯头组合而成,尺寸较小的可用一根管子煨制,大尺寸的可用二根或三根管子煨制。
由于补偿器工作时,其顶部受力最大,因而顶部应用一根管子煨制,不允许焊口存在。
方形补偿器具有以下优点:制造简单方便,常用无缝管煨制或机制弯头组合;可以自由安装,既可以在水平方向进行安装,又可以在垂直方向进行安装;有较小的轴向推力;较大的补偿能力,运行可靠,基本上不需要进行维修,使用时间长,使用期限等于管道使用年限;不需要设置管道维修平台;适用范围广,可以适用任何工作压力及任何热媒介质的供热管道。
方形补偿器的弯曲半径R=1.5DN,补偿器两端直管自由长度(导向支架至补偿器外伸臂的距离)为40DN。
方形补偿器根据边长和臂长的比值不同而分为四种类型,如图1所示。
根据提供的管径,和计算的热伸长量,可对各类型方形补偿器的尺寸和补偿能力查表直接选型,在此我们确定选用2型补偿器的形式。
2、方形补偿器的计算方形补偿器是应用非常普遍的热力管道补偿器。
计算时,通常需要确定:方形补偿器所补偿的伸长量,选择方形补偿器的形式和几何尺寸。
利用弹性中心法对方形补偿器的计算及步骤简单介绍如下。
2.1管道伸缩量的计算有一热油管道,设计压力为1.6MPa,,管道运行温度为200℃,安装时环境温度为10℃,管径为DN400mm,材质为碳钢,两固定支架之间的长度为56m,如果确定为2型方形补偿器,确定方形补偿器的尺寸及应力。
补偿器的计算解释:补偿管线因温度变化而伸长或缩短的配件,热力管线上所利用的主要有波形补偿器和波纹管两种。
一。
补偿器简介:补偿器习惯上也叫膨胀节,或伸缩节。
由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成.属于一种补偿元件。
利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移.也可用于降噪减振。
在现代工业中用途广泛。
二.补偿器作用:补偿器也称伸缩器、膨胀节、波纹补偿器。
补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用:1。
补偿吸收管道轴向、横向、角向热变形。
2.波纹补偿器伸缩量,方便阀门管道的安装与拆卸.3.吸收设备振动,减少设备振动对管道的影响.4。
吸收地震、地陷对管道的变形量。
三。
关于轴向型、横向型和角向型补偿器对管系及管架设计的要求(一)轴向型补偿器1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。
主固定管架要考虑波纹管静压推力及变形弹性力的作用.推力计算公式如下:Fp=100*P*AFp-补偿器轴向压力推(N),A—对应于波纹平均直径的有效面积(cm2),P—此管段管道最高压力(MPa).轴向弹性力的计算公式如下:Fx=f*Kx*XFX—补偿器轴向弹性力(N),KX—补偿器轴向刚度(N/mm);f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。
管道除上述部位外,可设置中间固定管架.中间固定管架可不考虑压力推力的作用.2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。
3、固定管架和导向管架的分布推荐按下图配置。
补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算:LGmax-最大导向间距(m);E-管道材料弹性模量(N/cm2);i—tp管道断面惯性矩(cm4);KX—补偿器轴向刚度(N/mm),X0—补偿额定位移量(mm)。
补偿器的计算补偿器的计算解释:补偿管线因温度变化而伸长或缩短的配件,热力管线上所利用的主要有波形补偿器和波纹管两种。
一. 补偿器简介:补偿器习惯上也叫膨胀节,或伸缩节。
由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。
属于一种补偿元件。
利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。
也可用于降噪减振。
在现代工业中用途广泛。
二.补偿器作用:补偿器也称伸缩器、膨胀节、波纹补偿器。
补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用:1.补偿吸收管道轴向、横向、角向热变形。
2. 波纹补偿器伸缩量,方便阀门管道的安装与拆卸。
3.吸收设备振动,减少设备振动对管道的影响。
4.吸收地震、地陷对管道的变形量。
三.关于轴向型、横向型和角向型补偿器对管系及管架设计的要求(一)轴向型补偿器1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。
主固定管架要考虑波纹管静压推力及变形弹性力的作用。
推力计算公式如下:Fp=100*P*AFp-补偿器轴向压力推(N),A-对应于波纹平均直径的有效面积(cm2),P-此管段管道最高压力(MPa)。
轴向弹性力的计算公式如下:Fx=f*Kx*XFX-补偿器轴向弹性力(N),KX-补偿器轴向刚度(N/mm);f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。
管道除上述部位外,可设置中间固定管架。
中间固定管架可不考虑压力推力的作用。
2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。
3、固定管架和导向管架的分布推荐按下图配置。
补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算:LGmax-最大导向间距(m);E-管道材料弹性模量(N/cm2);i-tp 管道断面惯性矩(cm4);KX-补偿器轴向刚度(N/mm),X0-补偿额定位移量(mm)。
L型和方形补偿器补偿器力学计算
补偿器在机械设计中扮演着非常重要的角色,它能够有效地补偿由于温度变化、机械变形等原因引起的线性和角度误差。
其中,L型和方形补偿器是常用的两种类型,下面将分别对它们的力学计算进行详细介绍。
L型补偿器由两段不等长度的杆件组成,形成"L"字形。
其中,较长的杆件称为主杆件,较短的杆件称为从杆件。
在实际应用中,主杆件一般固定不动,而从杆件用于补偿线性误差。
下面将详细介绍L型补偿器的力学计算方法。
1.1补偿量计算
L型补偿器的补偿量可以通过以下公式计算:
ΔL=α*L*ΔT
其中,ΔL表示补偿量,α表示材料的线膨胀系数,L表示从杆件的长度,ΔT表示温度变化。
1.2力的计算
L型补偿器在工作过程中需要承受一定的力。
其中,主要包括补偿力和应力。
补偿力可以通过以下公式计算:
F=ΔL*k
其中,F表示补偿力,ΔL表示补偿量,k表示补偿器的刚度系数。
应力可以通过以下公式计算:
σ=F/A
其中,σ表示应力,F表示补偿力,A表示补偿器的截面积。
方形补偿器由两段等长度的杆件和两个连接杆件组成,形成"口"字形。
其中,连接杆件可自由伸缩,用于补偿角度误差。
下面将详细介绍方形补
偿器的力学计算方法。
2.1补偿角度计算
方形补偿器的补偿角度可以通过以下公式计算:
Δθ=α*L*ΔT/L1
其中,Δθ表示补偿角度,α表示材料的线膨胀系数,L表示杆件
的长度,ΔT表示温度变化,L1表示连接杆件的长度。
2.2力的计算
方形补偿器在工作过程中需要承受一定的力。
其中,主要包括补偿力
和应力。
补偿力可以通过以下公式计算:
F=Δθ*k
其中,F表示补偿力,Δθ表示补偿角度,k表示补偿器的刚度系数。
应力可以通过以下公式计算:
σ=F/A
其中,σ表示应力,F表示补偿力,A表示补偿器的截面积。
总结:
L型和方形补偿器在力学计算方面有许多相似之处,都需要考虑补偿量、补偿力和应力。
只是在补偿的形式上有所不同,L型补偿器主要用于
补偿线性误差,方形补偿器主要用于补偿角度误差。
在实际设计中,根据具体的应用场景选择适合的补偿器类型,并进行相应的力学计算,能够保证机械系统的准确性和稳定性。