新教材人教A版高一数学必修一知识点与题型方法总结 第五章三角函数
- 格式:docx
- 大小:2.43 MB
- 文档页数:61
第五章三角函数5.1任意角和弧度制 (2)5.1.1任意角 (2)5.1.2弧度制 (8)5.2三角函数的概念 (14)5.2.1三角函数的概念 (14)5.2.2同角三角函数的基本关系 (21)5.3诱导公式 (27)第一课时诱导公式二、三、四 (27)第二课时诱导公式五、六 (32)5.4三角函数的图象与性质 (36)5.4.1正弦函数、余弦函数的图象 (36)5.4.2正弦函数、余弦函数的性质 (41)第一课时正、余弦函数的周期性与奇偶性 (41)第二课时正、余弦函数的单调性与最值 (48)5.4.3正切函数的性质与图象 (53)5.5三角恒等变换 (58)5.5.1两角和与差的正弦、余弦和正切公式 (58)第一课时两角差的余弦公式 (58)第二课时两角和与差的正弦、余弦公式 (62)第三课时两角和与差的正切公式 (68)第四课时二倍角的正弦、余弦、正切公式 (72)5.5.2简单的三角恒等变换 (76)5.6函数y=A sin(ωx+φ) (81)5.6.1匀速圆周运动的数学模型 (81)5.6.2函数y=A sin(ωx+φ)的图象 (81)第一课时函数y=A sin(ωx+φ)的图象及变换 (81)第二课时函数y=A sin(ωx+φ)图象与性质的应用 (85)5.7三角函数的应用 (89)5.1任意角和弧度制5.1.1任意角知识点一任意角的概念1.角的概念角可以看成平面内一条射线绕着它的端点旋转所成的图形.2.角的表示如图,①始边:射线的起始位置OA;②终边:射线的终止位置OB;③顶点:射线的端点O;④记法:图中的角α可记为“角α”或“∠α”或“∠AOB”.3.角的分类名称定义图形正角一条射线绕其端点按逆时针方向旋转形成的角负角一条射线绕其端点按顺时针方向旋转形成的角零角一条射线没有做任何旋转形成的角1.当角的始边和终边确定后,这个角就被确定了吗?提示:不是的.虽然始、终边确定了,但旋转的方向和旋转量的大小(旋转圈数)并没有确定,所以角也就不能确定.2.正角、负角、零角是根据什么区分的?提示:根据组成角的射线的旋转方向.1.判断正误.(正确的画“√”,错误的画“×”)(1)小于90°的角都是锐角.()(2)终边与始边重合的角为零角.()(3)大于90°的角都是钝角.()(4)将时钟拨快20分钟,则分针转过的度数是120°.()答案:(1)×(2)×(3)×(4)×2.下列说法正确的是()A.最大的角是180°B.最大的角是360°C.角不可以是负的D.角可以是任意大小答案:D3.下图中从OA旋转到OB,OB1,OB2时所成的角度分别是________、________、________.答案:390°-150°60°知识点二角的加法1.若两角的旋转方向相同且旋转量相等,那么就称α=β.2.设α,β是任意两个角,把角α的终边旋转角β,这时终边所对应的角是α+β.3.相反角:把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为-α,α-β=α+(-β).下列所示图形中,γ=α+β的是________;γ=α-β的是________.解析:在①中,α与γ的始边相同,α的终边为β的始边,β与γ的终边相同,所以γ=α+β.在②中,α与γ的始边相同,α的终边为-β的始边,-β与γ的终边相同,所以γ=α+(-β)=α-β.同理可知,③中γ=α-β,④中γ=α+β.答案:①④②③知识点三象限角与终边相同的角1.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.各象限角的集合3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.对集合S={β|β=α+k·360°,k∈Z}的理解(1)角α为任意角,“k∈Z”不能省略;(2)k·360°与α中间要用“+”连接,k·360°-α可理解成k·360°+(-α);(3)相等的角的终边一定相同,而终边相同的角不一定相等;终边相同的角有无数个,它们相差360°的整数倍.1.判断正误.(正确的画“√”,错误的画“×”)(1)终边相同的角一定相等.()(2)-30°是第四象限角.()(3)第二象限角是钝角.()(4)225°是第三象限角.()答案:(1)×(2)√(3)×(4)√2.与610°角终边相同的角表示为(其中k∈Z)()A.k·360°+230°B.k·360°+250°C.k·360°+70°D.k·180°+270°答案:B3.-179°角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案:C[例1](A.锐角都是第一象限角B.第一象限角一定不是负角C.小于180°的角是钝角、直角或锐角D.在90°≤β<180°范围内的角β不一定是钝角[解析]锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以A正确;-350°角是第一象限角,但它是负角,所以B错误;0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以C错误:由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,所以D正确.[答案]AD理解与角的概念有关问题的关键关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需要举一个反例即可.[例2] (1)把α改写成k ·360°+β(k ∈Z ,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<360°;(3)求与α终边相同的最大负角与最小正角.[解] (1)由2 021°除以360°,得商为5,余数为221°,∴取k =5,β=221°,则α=5×360°+221°.又β=221°是第三象限角,∴α为第三象限角.(2)与 2 021°角终边相同的角为k ·360°+2 021°,k ∈Z .令-360°≤k ·360°+2 021°<360°,k ∈Z ,∴k 可取-6,-5,将k 的值代入k ·360°+2 021°中,得角θ为-139°,221°.(3)由(2)知,与α终边相同的最大负角是-139°,最小正角是221°.终边相同角常用的三个结论(1)终边相同的角之间相差360°的整数倍;(2)终边在同一直线上的角之间相差180°的整数倍;(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.[例3] (°;③-960°;④1 530°这四个角中,是第二象限角的是( )A .①B .②C .③D .④[解析] 第二象限角α需满足k ·360°+90°<α<k ·360°+180°,k ∈Z ,分析可知:①是第二象限角;②是第二象限角;③是第二象限角;④不是第二象限角.故选A 、B 、C.[答案] ABC(2)已知α是第二象限角,求角α2所在的象限.[解] ∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).∴k 2·360°+45°<α2<k 2·360°+90°(k ∈Z ).当k 为偶数时,令k =2n (n ∈Z ),得n ·360°+45°<α2<n ·360°+90°,这表明α2是第一象限角;当k 为奇数时,令k =2n +1(n ∈Z ),得n ·360°+225°<α2<n ·360°+270°,这表明α2是第三象限角.∴α2为第一或第三象限角.[母题探究]1.(变设问)在本例(2)的条件下,求角2α的终边的位置.解:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).∴k ·720°+180°<2α<k ·720°+360°(k ∈Z ).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.2.(变条件)若将本例(2)中的“第二象限”改为“第一象限”,如何求解?解:∵k ·360°<α<k ·360°+90°(k ∈Z ),∴k ·180°<α2<k ·180°+45°(k ∈Z ).当k =2n (n ∈Z )时,n ·360°<α2<n ·360°+45°,∴α2是第一象限角.当k =2n +1(n ∈Z )时,n ·360°+180°<α2<n ·360°+225°,∴α2是第三象限角.∴α2是第一或第三象限角.1.给定一个角判断它是第几象限角的思路判断角α是第几象限角的常用方法为将α写成β+k ·360°(其中k ∈Z ,β在0°~360°范围内)的形式,观察角β的终边所在的象限即可.2.分角、倍角所在象限的判定思路(1)求解的思维模式应是:由欲求想需求,由已知想可知,抓住内在联系,确定解题方略;(2)由α的象限确定2α的象限时,应注意2α可能不再是象限角,对此特殊情况应特别指出.如α=135°,而2α=270°就不再是象限角.5.1.2 弧度制知识点一 度量角的两种制度1.用弧度为单位表示角的大小时,“弧度”或 “rad ”可以略去不写,只写这个角对应的弧度数即可.2.不管是以弧度还是以度为单位度量角的大小,都是一个与半径大小无关的定值.知识点二角度制与弧度制的换算1.弧度数的计算2.弧度与角度的换算1.一个角的度数是否对应一个弧度数?提示:是.一个给定的角,其度数和弧度数都是唯一确定的.2.在大小不同的圆中,长度为1的弧所对的圆心角相等吗?提示:不相等.这是因为长度为1的弧是指弧的长度为1,在大小不同的圆中,由于半径不同,所以圆心角也不同.1.判断正误.(正确的画“√”,错误的画“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位.()(2)用角度制和弧度制度量角,都与圆的半径有关.()(3)1°的角是周角的1360,1 rad的角是周角的12π.()(4)1 rad 的角比1°的角要大.( )答案:(1)√ (2)× (3)√ (4)√2.(多选)下列转化结果正确的是( )A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-76πD.π12化成度是15°答案:ABD知识点三 扇形的弧长和面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则(1)弧长公式:l =αR ;(2)扇形面积公式:S =12lR =12αR 2.在应用弧长公式、扇形面积公式时,要注意α的单位是“弧度”,而不是“度”,若已知角是以“度”为单位的,则应先化成“弧度”,再代入计算.1.判断正误.(正确的画“√”,错误的画“×”)(1)扇形的半径为1 cm ,圆心角为30°,则扇形的弧长l =r |α|=1×30=30(cm).( )(2)圆的半径变为原来的2倍,而弧长也增加到原来的2倍,弧长所对的扇形的面积不变.( )答案:(1)× (2)×2.已知扇形的半径r =30,圆心角α=π6,则该扇形的弧长等于________,面积等于________.答案:5π 75π[例1] ( (1)5116π;(2)-7π12;(3)10°;(4)-855°. [解] (1)5116π=5116×180°=15 330°. (2)-7π12=-712×180°=-105°. (3)10°=10×π180=π18.(4)-855°=-855×π180=-19π4.角度制与弧度制的互化原则和方法(1)原则:牢记180°=π rad ,充分利用1°=π180 rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算;(2)方法:设一个角的弧度数为α,角度数为n °,则α rad =⎝ ⎛⎭⎪⎫α·180π°;n °=n ·π180 rad.[注意] 用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.[例2] ≤α<2π,k ∈Z )的形式,指出它是第几象限角并写出与α终边相同的角的集合.(1)-46π3;(2)-1 485°.[解] (1)-46π3=-8×2π+2π3,它是第二象限角,与2π3终边相同的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=2k π+2π3,k ∈Z. (2)-1 485°=-5×360°+315°=-10π+7π4,它是第四象限角,与7π4终边相同的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=2k π+7π4,k ∈Z.弧度制下与角α终边相同的角的表示在弧度制下,与角α的终边相同的角可以表示为{β|β=2k π+α,k ∈Z },即与角α终边相同的角可以表示成α加上2π的整数倍.[注意] (1)注意角度与弧度不能混用; (2)各终边相同的角需加2k π,k ∈Z .[,则扇形圆心角(正角)的弧度数为( )A.12 B.π2 C.14D.π4[解析] 设扇形的半径为r ,圆心角为α(0<α<2π), 由题意,得⎩⎪⎨⎪⎧12r 2α=4, ①2r +rα=10, ②由②得,r =102+α,③ 把③代入①,得2α2-17α+8=0. 解得α=12或α=8(舍去). 故扇形圆心角的弧度数为12. [答案] A关于弧度制下扇形问题的解决方法(1)三个公式:|α|=l r ,S =12lr =12αr 2,要恰当选择公式,建立未知量、已知量间的关系,通过解方程(组)求值;(2)弧长、面积的最值:利用圆心角的弧度数、半径表示出弧长(面积),利用函数知识求最值,一般利用二次函数的最值求解.扇形的弧长公式的应用如图,点P ,Q 从点A (4,0)同时出发,沿圆周运动,点P 按逆时针方向每秒钟转π3,点Q 按顺时针方向每秒钟转π6.[问题探究]1.点P ,Q 第一次相遇时用了多少秒?提示:设点P ,Q 第一次相遇所用的时间是t s ,则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π,解得t =4,∴第一次相遇时用了4 s.2.点P ,Q 第一次相遇时各自走过的弧长是多少?提示:第一次相遇时,点P 运动到角4π3的终边与圆相交的位置,点Q 运动到角-2π3的终边与圆相交的位置,∴点P 走过的弧长为4π3·4=16π3,点Q 走过的弧长为⎪⎪⎪⎪⎪⎪-2π3×4=8π3.3.若点Q 也按逆时针方向转,则点P ,Q 第一次相遇时用了多少秒? 提示:设点P ,Q 第一次相遇的时间为t s ,则t ·π3-t ·π6=2π,解得t =12 s .所以第一次相遇时用了12 s.[迁移应用]某时针的秒针端点A 到中心O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合.设秒针端点A 转过的路程为d cm ,所形成的扇形面积为S cm 2,分别求d 与S 关于时间t (s)的函数,其中t ∈[0,60].解:∵秒针的旋转方向为顺时针,∴t s 后秒针端点A 转过的角α=-πt30 rad , ∴秒针端点A 转过的路程为d =|α|·r =πt6(cm),∴形成的扇形面积为S=12|α|·r2=5πt12(cm2),∴d=πt6(t∈[0,60]),S=5πt12(t∈[0,60]).5.2三角函数的概念5.2.1三角函数的概念知识点一任意角的三角函数的定义条件如图,设α是一个任意角,α∈R,它的终边OP与单位圆交于点P(x,y)定义正弦点P的纵坐标y叫做α的正弦函数,记作sin α,即y=sin_α余弦点P的横坐标x叫做α的余弦函数,记作cos α,即x=cos_α正切点P的纵坐标与横坐标的比值yx叫做α的正切,记作tanα,即yx=tan_α(x≠0)三角函数正弦函数y=sin x,x∈R;余弦函数y=cos x,x∈R;正切函数y=tan x,x≠π2+kπ,k∈Z三角函数的定义(1)三角函数是一个函数,符合函数的定义,是由角的集合(弧度数)到一个比值的集合的函数;(2)三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.1.判断正误.(正确的打“√”,错误的打“×”) (1)sin α表示sin 与α的乘积.( ) (2)如图所示,sin α=y .( )(3)终边落在y 轴上的角的正切函数值为0.( ) 答案:(1)× (2)× (3)×2.已知角α的终边经过点⎝ ⎛⎭⎪⎫-32,-12,则sin α=______,cos α=________,tan α=________.答案:-12 -32 33 知识点二 三角函数值的符号 如图所示:正弦:一二象限正,三四象限负; 余弦:一四象限正,二三象限负; 正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.1.判断正误.(正确的打“√”,错误的打“×”) (1)若α是三角形的内角,则必有sin α>0.( ) (2)若sin α>0,则α是第一或第二象限角.( ) 答案:(1)√ (2)×2.若sin α<0且cos α<0,则角α为第________象限角. 答案:三知识点三 诱导公式一终边相同的角的同一三角函数的值相等,由此得到一组公式:根据三角函数的诱导公式一,终边相同的角的同一三角函数值有何关系? 提示:终边相同的角的同一三角函数值相等.诱导公式一的结构特点(1)其结构特点是函数名相同,左边角为α+2k π,右边角为α;(2)由公式一可知,三角函数值有“周而复始”的变化规律,即角的终边每绕原点旋转一周,函数值将重复出现;(3)此公式也可以记为:sin(α+k ·360°)=sin α,cos(α+k ·360°)=cos α,tan(α+k ·360°)=tan α.其中k ∈Z .[例1] 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫1213,513和⎝ ⎛⎭⎪⎫-35,45,那么sin αcos β=( )A .-3665 B .-313 C.413D.4865(2)设a <0,角α的终边与单位圆的交点为P (-3a ,4a ),那么sin α+2cos α的值等于( )A.25 B .-25 C.15D .-15[解析] (1)∵角α,β的终边与单位圆分别交于点⎝ ⎛⎭⎪⎫1213,513和⎝ ⎛⎭⎪⎫-35,45,故由定义知sin α=513,cos β=-35, ∴sin αcos β=513×⎝ ⎛⎭⎪⎫-35=-313.(2)∵点P 在单位圆上,则|OP |=1. 即(-3a )2+(4a )2=1,解得a =±15.∵a <0,∴a =-15. ∴P 点的坐标为⎝ ⎛⎭⎪⎫35,-45.∴sin α=-45,cos α=35. ∴sin α+2cos α=-45+2×35=25. [答案] (1)B (2)A利用三角函数的定义求一个角的三角函数值有以下几种情况:(1)若已知角α终边上一点P (x ,y )是单位圆上的点(有时此点的坐标需求出),则sin α=y ,cos α=x ,tan α=yx (x ≠0);(2)若已知角α终边上一点P (x ,y )不是单位圆上的点,则首先求r = x 2+y 2,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0);(3)终边在已知直线(射线)上,可以在直线(射线)上取两个(一个)点,再利用定义求解;(4)参数问题:若点的坐标,角的三角函数值中含有字母,则需要注意字母是否需要分类讨论.题型二三角函数值符号的判定[例2] (链接教科书第180页例3、第181页例4)(1)已知点P (tan α,cos α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)sin 285°·cos(-105°)________0(填“<”或“>”). [解析] (1)依题意得⎩⎨⎧tan α<0,cos α<0.由tan α<0知,α是第二、四象限角.当α是第二象限角时,cos α<0,符合题意;当α是第四象限角时,cos α>0,不符合题意.故选B.(2)因为285°是第四象限角,所以sin 285°<0.因为-105°是第三象限角,所以cos(-105°)<0.所以sin 285°·cos(-105°)>0.[答案] (1)B (2)>正弦、余弦函数值的正负规律题型三诱导公式一的应用[例3] ((1)cos 25π3+tan ⎝⎛⎭⎪⎫-15π4; (2)sin 420°cos 750°+sin(-690°)cos(-660°). [解] (1)因为cos 25π3=cos ⎝ ⎛⎭⎪⎫π3+8π=cos π3=12,tan ⎝ ⎛⎭⎪⎫-15π4=tan ⎝ ⎛⎭⎪⎫-4π+π4=tan π4=1, 所以cos 25π3+tan ⎝⎛⎭⎪⎫-15π4=12+1=32. (2)因为sin 420°=sin(360°+60°)=sin 60°=32, cos 750°=cos(2×360°+30°)=cos 30°=32, sin(-690°)=sin(-2×360°+30°)=sin 30°=12, cos(-660°)=cos(-2×360°+60°)=cos 60°=12,所以sin 420°cos 750°+sin(-690°)cos(-660°)=32×32+12×12=1.利用诱导公式求解任意角的三角函数值的步骤三角函数在单位圆中的几何表示及应用设角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点P ,如图①,过点P 作PM 垂直x 轴于点M ,作PN 垂直y 轴于点N ,则点P 的坐标为(cos α,sin α),其中cos α=OM ,sin α=ON ,即角α的余弦和正弦分别等于角α的终边与单位圆交点的横坐标和纵坐标.以A 为原点建立y ′轴与y 轴同向,y ′轴与α的终边(或其反向延长线)相交于点T (或T ′),如图②,则tanα=AT (或AT ′).我们把有向线段OM ,ON 和AT (或AT ′)分别叫做α的余弦线、正弦线和正切线,它们分别是余弦函数、正弦函数和正切函数的一种几何表示.[问题探究]1.设角α=x rad ,且0<x <π2 ,于是x ,sin x ,tan x 都是实数,请你给x 一个具体的值,比较三个实数的大小.提示: 我们先给x 一个具体的值来进行比较:取x =π6,则sin x =12,tan x =33.因为12=36<π6,所以sin π6<π6.又tan π6=33=236>π6,所以tan π6>π6.从而可得sin π6<π6<tan π6.即当x =π6时,sin x <x <tan x .2.你在第1问中得到的大小关系是否对区间⎝ ⎛⎭⎪⎫0,π2上的任意x 都成立?提示:设角α的顶点与圆心O 重合,始边与x 轴的非负半轴重合,终边与单位圆相交于点P ,如图所示.过点P 作PM ⊥x 轴于点M ,过x 轴正半轴与以坐标原点为圆心的单位圆的交点A 作该单位圆的切线AT ,交α的终边于点T ,连接AP ,则MP =sin x ,AT =tan x ,S △OAP <S 扇形AOP <S △OAT .因为S △OAP =12OA ·MP =12sin x , S 扇形AOP =12x ·12=12x , S △OAT =12OA ·AT =12tan x , 所以12sin x <12x <12tan x ,即sin x <x <tan x .因此当x ∈⎝⎛⎭⎪⎫0,π2时,sin x <x <tan x .这在后面的学习中会经常用到.[迁移应用]在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12.解:(1)如图①所示,作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(阴影部分)即为角α的终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π3≤α≤2k π+2π3,k ∈Z.(2)如图②所示,作直线x =-12交单位圆于C ,D 两点,连接OC 与OD ,则OC 与OD 围成的区域(阴影部分)即为角α的终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k π+4π3,k ∈Z.5.2.2 同角三角函数的基本关系知识点 同角三角函数的基本关系基本关系式的变形公式sin 2α+cos 2α=1⇒⎩⎨⎧sin 2α=1-cos 2α,cos 2α=1-sin 2α,(sin α±cos α)2=1±2sin αcos α.tan α=sin αcos α⇒ ⎩⎨⎧sin α=tan αcos α,cos α=sin αtan α.1.判断正误.(正确的画“√”,错误的画“×”) (1)对∀x ∈R ,sin 24x +cos 24x =1.( ) (2)对∀x ∈R ,tan x =sin xcos x .( ) (3)若cos α=0,则sin α=1.( ) 答案:(1)√ (2)× (3)× 2.化简1-sin 2π5的结果是( )A .cos π5 B .-cos π5 C .sin π5 D .-sin π5答案:A3.已知cos α=-513,α∈⎝ ⎛⎭⎪⎫π,3π2,则tan α=________.答案:1254.化简:(1+tan 2α)·cos 2α等于________.答案:1题型一利用同角基本关系式求值角度一 已知一个角的某个三角函数值,求该角的其他三角函数值 [例1] (链接教科书第183页例6)(1)已知sin α=15,求cos α,tan α 的值;(2)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,求cos α的值.[解] (1)∵sin α=15>0,∴α是第一或第二象限角. 当α为第一象限角时,cos α=1-sin 2α=1-125=265,tan α=sin αcos α=612;当α为第二象限角时,cos α=-265,tan α=-612. (2)由已知得⎩⎨⎧sin αcos α=2, ①sin 2α+cos 2α=1, ② 由①得sin α=2cos α代入②得4cos 2α+cos 2α=1, ∴cos 2α=15,又α∈⎝ ⎛⎭⎪⎫π,3π2 ,∴cos α<0,∴cos α=-55.求三角函数值的方法(1)已知sin θ(或cos θ)求tan θ常用以下方法求解:(2)已知tan θ求sin θ(或cos θ)常用以下方法求解:[注意]当角θ的范围不确定且涉及开方时,常因三角函数值的符号问题而对角θ分区间(象限)讨论.角度二已知tan α的值,求关于sin α,cos α齐次式的值[例2]已知tan α=2.(1)求sin α-3cos αsin α+cos α的值;(2)求2sin2α-sin αcos α+cos2α的值. [解](1)法一(代入法):∵tan α=2,∴sin αcos α=2,∴sin α=2cos α.∴sin α-3cos αsin α+cos α=2cos α-3cos α2cos α+cos α=-13.法二(弦化切):∵tan α=2.∴sin α-3cos αsin α+cos α=sin αcos α-3sin αcos α+1=tan α-3tan α+1=2-32+1=-13.(2)2sin2α-sin αcos α+cos2α=2sin2α-sin αcos α+cos2αsin2α+cos2α=2tan2α-tan α+1tan2α+1=2×4-2+14+1=75.已知角α的正切求关于sin α,cos α的齐次式的方法(1)关于sin α,cos α的齐次式就是式子中的每一项都是关于sin α,cos α的式子且它们的次数之和相同,设为n次,将分子、分母同除以cos α的n次幂,其式子可化为关于tan α的式子,再代入求值;(2)若无分母时,把分母看作1,并将1用sin2α+cos2α来代换,将分子、分母同除以cos2α,可化为关于tan α的式子,再代入求值.[例3]已知sin α+cos α=-13,0<α<π.(1)求sin αcos α的值;(2)求sin α-cos α的值.[解](1)由sin α+cos α=-13得(sinα+cos α)2=19,sin2α+2sin αcos α+cos2α=19,sinαcos α=-49.(2)因为0<α<π,sin αcos α<0,所以sin α>0,cos α<0⇒sin α-cos α>0.(sin α-cos α)2=1-2sin αcos α=17 9,所以sin α-cos α=17 3.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α.[注意]求sin α+cos α或sin α-cos α的值,要注意根据角的终边位置,利用三角函数线判断它们的符号.[例4](链接教科书第184页练习4题)化简sin α1+sin α-sin α1-sin α.[解]sin α1+sin α-sin α1-sin α=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin2α1-sin2α=-2sin2αcos2α=-2tan2α.三角函数式的化简技巧(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的;(2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的;(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.角度二 三角恒等式的证明[例5] 求证:1+2sin αcos αsin 2α-cos 2α=tan α+1tan α-1.[证明] 法一:左边=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=右边.所以等式成立.法二:右边=sin αcos α+1sin αcos α-1=sin α+cos αsin α-cos α=(sin α+cos α)2(sin α-cos α)(sin α+cos α) =1+2sin αcos αsin 2α-cos 2α=左边.所以等式成立.证明三角恒等式常用的方法(1)从左向右推导或从右向左推导,一般由繁到简; (2)左右归一法,即证明左右两边都等于同一个式子;(3)化异为同法,即针对题设与结论间的差异,有针对地变形,以消除差异; (4)变更命题法,如要证明a b =c d ,可证ad =bc ,或证d b =ca 等; (5)比较法,即设法证明“左边—右边=0”或“左边右边=1”.5.3诱导公式第一课时诱导公式二、三、四知识点诱导公式二、三、四1.公式二终边关系图示角π+α与角α的终边关于原点对称公式sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα2.公式三终边关系图示角-α与角α的终边关于x轴对称公式sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tan α3.公式四终边关系图示角π-α与角α的终边关于y轴对称公式sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα诱导公式的记忆方法与口诀(1)记忆方法:2kπ+α,-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;(2)记忆口诀:“函数名不变,符号看象限”.“口诀”的正确理解:“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原函数名在本公式中角的终边所在象限是取正值还是负值.1.判断正误.(正确的画“√”,错误的画“×”)(1)诱导公式中角α是任意角.()(2)点P(x,y)关于x轴的对称点是P′(-x,y).()(3)诱导公式中的符号是由角α的象限决定的.()(4)诱导公式一、二、三、四函数的名称都不变.()(5)公式tan(α-π)=tan α中,α=π2不成立.()答案:(1)×(2)×(3)×(4)√(5)√2.已知cos(π+θ)=36,则cosθ=()A.36B.-36C.336D.-336答案:B3.已知tan α=4,则tan(π-α)=________. 答案:-44.cos(-30°)=________,sin 2π3=________. 答案:32 32题型一给角求值问题[例1] (链接教科书第189页例1)求下列各三角函数值: (1)cos 17π6;(2)tan(-855°);(3)tan 3π4+sin 11π6. [解] (1)cos 17π6=cos ⎝ ⎛⎭⎪⎫2π+5π6=cos 5π6=cos ⎝ ⎛⎭⎪⎫π-π6=-cos π6=-32.(2)tan(-855°)=-tan 855°=-tan(2×360°+135°) =-tan 135°=-tan(180°-45°)=tan 45°=1. (3)原式=tan ⎝ ⎛⎭⎪⎫π-π4+sin ⎝ ⎛⎭⎪⎫2π-π6=-tan π4-sin π6=-1-12 =-32.利用诱导公式解决给角求值问题的步骤[例2] ((1)cos (-α)tan (7π+α)sin (π-α);(2)sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). [解] (1)原式=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1.(2)原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1.利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的; (2)化简时函数名没有改变,但一定要注意函数的符号有没有改变; (3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.[例⎭⎪⎫α-sin 2⎝⎛⎭⎪⎫α-π6的值.[解] 因为cos ⎝ ⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin 2⎝ ⎛⎭⎪⎫α-π6=sin 2⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π6-α=sin 2⎝ ⎛⎭⎪⎫π6-α=1-cos 2⎝ ⎛⎭⎪⎫π6-α=1-⎝ ⎛⎭⎪⎫332=23,所以cos ⎝ ⎛⎭⎪⎫5π6+α-sin 2⎝ ⎛⎭⎪⎫α-π6 =-33-23=-2+33.[母题探究]1.(变设问)本例条件不变,求:cos ⎝ ⎛⎭⎪⎫7π6-α-sin 2⎝ ⎛⎭⎪⎫α-13π6的值.解:cos ⎝ ⎛⎭⎪⎫7π6-α-sin 2⎝ ⎛⎭⎪⎫α-13π6 =cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π6-α-sin 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6-2π=-cos ⎝ ⎛⎭⎪⎫π6-α-sin 2⎝ ⎛⎭⎪⎫π6-α=-33-23=-3+23.2.(变条件、变设问)将本例中的“-”改为“+”,“+”改为“-”,其他不变,应如何解答?解:由题意知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α+sin 2⎝ ⎛⎭⎪⎫α+π6的值.因为cos ⎝ ⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α= -cos ⎝ ⎛⎭⎪⎫π6+α=-33, sin 2⎝ ⎛⎭⎪⎫α+π6=1-cos 2⎝ ⎛⎭⎪⎫π6+α=1-⎝ ⎛⎭⎪⎫332=23, 所以cos ⎝ ⎛⎭⎪⎫5π6-α+sin 2⎝ ⎛⎭⎪⎫α+π6=-33+23=2-33.解决条件求值问题的两技巧第二课时 诱导公式五、六知识点 诱导公式五、六 1.诱导公式五、六2.诱导公式五、六可用语言概括(1)函数值:π2±α的正弦(余弦)值,分别等于α的余弦(正弦)函数值; (2)符号:函数值前面加上一个把α看成锐角时原函数值的符号.公式五、六的记忆方法与口诀(1)记忆方法:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号;(2)记忆口诀:“函数名改变,符号看象限”或“正变余,余变正,符号象限定”.1.判断正误.(正确的画“√”,错误的画“×”) (1)诱导公式五、六中的角α只能是锐角.( ) (2)sin(90°+α)=-cos α.( )(3)cos ⎝ ⎛⎭⎪⎫α-π2=-sin α.( )答案:(1)× (2)× (3)×2.下列与sin θ的值相等的是( ) A .sin(π+θ) B .sin ⎝ ⎛⎭⎪⎫π2-θC .cos ⎝ ⎛⎭⎪⎫π2-θD .cos ⎝ ⎛⎭⎪⎫π2+θ答案:C3.若α∈⎝ ⎛⎭⎪⎫0,π2,sin ⎝ ⎛⎭⎪⎫π2+α=12,则cos α=________.答案:124.已知sin θ=15,则cos(450°+θ)=________. 答案:-15[例1] (1)已知tan α=3,求sin ⎝ ⎛⎭⎪⎫π2-α+cos ⎝ ⎛⎭⎪⎫π2+α的值;(2)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,求cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫2π3+α的值. [解] (1)sin (α-π)+cos (π-α)sin ⎝ ⎛⎭⎪⎫π2-α+cos ⎝ ⎛⎭⎪⎫π2+α=-sin α-cos αcos α-sin α=-tan α-11-tan α=-3-11-3=2. (2)cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫2π3+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α·sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α·sin ⎝ ⎛⎭⎪⎫π3-α=12×12=14.用诱导公式化简求值的方法(1)对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行切化弦,以保证三角函数名最少;(2)解答此类问题要学会发现它们的互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4-α与π4+α等互余,π3+θ与2π3-θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.[例2] (sin (4π-α)cos ⎝ ⎛⎭⎪⎫9π2+αsin ⎝ ⎛⎭⎪⎫11π2+αcos (2π-α)-tan (5π-α)sin (3π-α)sin ⎝ ⎛⎭⎪⎫π2-α.[解] ∵sin(4π-α)=sin(-α)=-sin α,cos ⎝ ⎛⎭⎪⎫9π2+α=cos ⎣⎢⎡⎦⎥⎤4π+⎝ ⎛⎭⎪⎫π2+α=cos ⎝ ⎛⎭⎪⎫π2+α=-sin α, sin ⎝ ⎛⎭⎪⎫11π2+α=sin ⎣⎢⎡⎦⎥⎤6π-⎝ ⎛⎭⎪⎫π2-α=-sin ⎝ ⎛⎭⎪⎫π2-α =-cos α,tan(5π-α)=tan(π-α)=-tan α, sin(3π-α)=sin(π-α)=sin α,∴原式=sin αsin α-cos αcos α--tan αsin αcos α=-sin 2αcos 2α+1cos 2α=1-sin 2αcos 2α=cos 2αcos 2α=1.用诱导公式进行化简时的注意点(1)化简后项数尽可能的少;(2)函数的种类尽可能的少; (3)分母不含三角函数的符号; (4)能求值的一定要求值;(5)含有较高次数的三角函数式,多用因式分解、约分等.[例3] 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝ ⎛⎭⎪⎫α+3π2cos ⎝ ⎛⎭⎪⎫α+3π2=-tan α. [证明] 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π2-α·cos ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π2-αcos ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π2-α=sin 2α-sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=sin 2α-cos α·sin α=-sin αcos α=-tan α=右边. ∴原等式成立.利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法有:(1)从一边开始,使得它等于另一边,一般由繁到简; (2)左右归一法:即证明左右两边都等于同一个式子;(3)针对题设与结论间的差异,有针对性地进行变形,以消除差异.[例4]f (α)=sin ⎝ ⎛⎭⎪⎫α-π2cos ⎝ ⎛⎭⎪⎫3π2+αtan (2π-α)tan (α+π)sin (α+π).(1)化简f (α);(2)若f (α)·f ⎝ ⎛⎭⎪⎫α+π2=-18,且5π4≤α≤3π2,求f (α)+f ⎝ ⎛⎭⎪⎫α+π2的值.[解] (1)f (α)=-cos αsin α(-tan α)tan α(-sin α)=-cos α.(2)f ⎝ ⎛⎭⎪⎫α+π2=-cos ⎝ ⎛⎭⎪⎫α+π2=sin α,因为f (α)·f ⎝ ⎛⎭⎪⎫α+π2=-18,所以cosα·sin α=18,可得⎣⎢⎡⎦⎥⎤f (α)+f ⎝ ⎛⎭⎪⎫α+π22=(sin α-cos α)2=34,由5π4≤α≤3π2,得cos α>sin α,所以f (α)+f ⎝⎛⎭⎪⎫α+π2=sin α-cos α=-32.诱导公式综合应用要“三看”一看角:①化大为小;②看角与角间的联系,可通过相加、相减分析两角的关系;二看函数名称:一般是弦切互化;三看式子结构:通过分析式子,选择合适的方法,如分式可对分子分母同乘一个式子变形.5.4 三角函数的图象与性质5.4.1 正弦函数、余弦函数的图象知识点 正弦函数、余弦函数的图象 函数y =sin xy =cos x图象1.“五点法”只是画出y =sin x 和y =cos x 在[0,2π]上的图象;若x ∈R ,可先作出正弦函数、余弦函数在[0,2π]上的图象,然后通过不断向左、右平移可得到y =sin x ,x ∈R 和y =cos x ,x ∈R 的图象.2.将y =sin x ,x ∈R 的图象向左平移π2个单位长度得y =cos x ,x ∈R 的图象,因此y =sin x ,x ∈R 与y =cos x ,x ∈R 的图象形状相同,只是在直角坐标系中的位置不同.1.判断正误.(正确的画“√”,错误的画“×”) (1)函数y =sin x 的图象关于y 轴对称.( ) (2)函数y =cos x 的图象与y 轴只有一个交点.( ) (3)将余弦曲线向右平移π2个单位就得到正弦曲线.( ) 答案:(1)× (2)√ (3)√2.在“五点法”中,正弦曲线最低点的横坐标与最高点的横坐标的差等于( )A.π2 B .π C.3π2 D .2π答案:B。
(名师选题)人教高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3, 于是tan (α+π4)= tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.2、已知sinαcosα=12,则tanα+1tanα的值为( ) A .12B .−12C .−2D .2答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果. ∵sinαcosα=12, ∴tanα+1tanα=sinαcosα+cosαsinα=sin 2α+cos 2αsinαcosα=112=2,故选:D.3、设0<α<π,sinα+cosα=713,则1−tanα1+tanα的值为( )A .177B .717C .−177D .−717 答案:C分析:依题意可知π2<α<π,得到cosα−sinα<0,再利用正余弦和差积三者的关系可求得cosα−sinα的值,将所求关系式切化弦,代入所求关系式计算即可. 由sinα+cosα=713,平方得到1+sin2α=49169,∴sin2α=49169−1=−120169=2sinαcosα,0<α<π, ∴ π2<α<π,∴cosα<0,而sinα>0, ∴cosα−sinα<0; 令t =cosα−sinα(t <0), 则t 2=1−sin2α,∴t 2=1−sin2α=1+120169=289169,t <0∴t =−1713∴ 1−tanα1+tanα=cosα−sinαcosα+sinα=137(cosα−sinα)=137×(−1713)=−177,故选:C .4、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +rsin∠BPO =5,所以r +rsin1=5, 所以r =5sin11+sin1,故选:C.5、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203)答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π,由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.6、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12 =cos π6=√32. 故选:D.7、已知函数f(x)=a 2x−6+3(a >0且a ≠1)的图像经过定点A ,且点A 在角θ的终边上,则sinθ−cosθsinθ+cosθ=( ) A .−17B .0C .7D .17 答案:D分析:由题知A(3,4),进而根据三角函数定义结合齐次式求解即可. 解:令2x −6=0得x =3,故定点A 为A(3,4), 所以由三角函数定义得tanθ=43, 所以sinθ−cosθsinθ+cosθ=tanθ−1tanθ+1=43−143+1=17故选:D8、若y =f (x )的图像与y =cosx 的图象关于x 轴对称,则y =f (x )的解析式为( )A.y=cos(−x)B.y=−cosxC.y=cos|x|D.y=|cosx|答案:B分析:根据f(−x)、−f(x)、f(|x|)与|f(x)|的图象特征依次判断即可得到结果.对于A,y=cos(−x)=cosx,图象与y=cosx重合,A错误;对于B,∵y=f(x)与y=−f(x)图象关于x轴对称,∴y=−cosx与y=cosx图象关于x轴对称,B正确;对于C,当x≥0时,y=cos|x|=cosx,可知其图象不可能与y=cosx关于x轴对称,C错误;对于D,将y=cosx位于x轴下方的图象翻折到x轴上方,就可以得到y=|cosx|的图象,可知其图象与y= cosx的图象不关于x轴对称,D错误.故选:B.9、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等;(5)若曲线Γ和圆的宽相等,则它们的面积相等.A.1个B.2个C.3个D.4个答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为1,根据定义逐项判断即可得出结论.2若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,(1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确;(5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键. 10、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可.由f(−x)=−sin(−x)+xcosx+x2=−−sinx−xcosx+x2=−f(x),所以f(x)为奇函数,故排除选项A.又f(π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C填空题11、如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为4√3,则这个圆锥的体积为___________.答案:128√2π81分析:作出该圆锥的侧面展开图,该小虫爬行的最短路程为PP′,由余弦定理求出cos∠P′OP=2π3,求出底面圆的半径r,从而求出这个圆锥的高,由此能求出这个圆锥的体积.作出该圆锥的侧面展开图,如图所示:该小虫爬行的最短路程为PP′,由余弦定理可得:cos∠P′OP=OP2+OP′2−PP′22OP·OP′=42+42−(4√3)22×4×4=−12∴cos∠P′OP=2π3.设底面圆的半径为r,则有2πr=2π3·4,解得r=43,所以这个圆锥的高为ℎ=√16−169=8√23,则这个圆锥的体积为V=13Sℎ=13πr2ℎ=13π×169×8√23=128√2π81.所以答案是:128√2π81.小提示:立体几何中的翻折叠(展开)问题要注意翻折(展开)过程中的不变量.12、自行车大轮48齿,小轮20齿,大轮转一周小轮转___________周.答案:125分析:通过两个车轮转动的齿数相同,计算即可得出结果.∵两个车轮转动的齿数相同,大轮有48齿,小轮有20齿,∴当大轮转动一周时,大轮转动了48个齿,∴小轮转动4820=125周.所以答案是:125.13、若cosα=−35,α为第二象限的角,则sin(π−α)=__________.答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).∵cosα=−35,α为第二象限的角,∴sinα=√1−cos2α=45,∴sin(π−α)=sinα=45.所以答案是:45.小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.14、若α∈(π2,π),且cos2α−sinα=14,则tanα=_____.答案:−√33分析:根据同角平方和关系可解得sinα=12,进而根据角的范围可得α=5π6,进而可求.因为cos2α−sinα=14,所以4(1-sin2α)-4sinα-1=0即4sin 2α+4sin α-3=0 ,∴解得sin α=12或sin α=−32(舍去).∵α∈(π2,π),∴α=5π6,因此tan α=tan5π6=−√33. 所以答案是:−√33 15、已知cos(α+π6)=35,α∈(0,π2),则cos(2α+7π12)=__.答案:−31√250分析:先求出cos(2α+π3)=−725,sin(2α+π3)=2425,再利用和差角公式即可求解. ∵cos(α+π6)=35,α∈(0,π2). ∴(α+π6)∈(0,π2),(2α+π3)∈(0,π).cos(2α+π3)=2cos(α+π6)−1=2×(35)2−1=−725. ∴sin(2α+π3)=√1−cos(2α+π3)=2425.∴cos(2α+7π12)=cos(2α+π3+π4)=cos(2α+π3)cos π4−sin(2α+π3)sin π4 =−725×√22−2425×√22=−31√250. 所以答案是:−31√250. 解答题16、已知函数y =asin (2x −π3)+b (a >0).(1)求出该函数的单调递减区间;(2)当x ∈[0,π2]时,f (x )的最小值是−2,最大值是√3,求实数a ,b 的值.答案:(1)[k π+5π12,k π+11π12],k ∈Z(2)a =2,b =−2+√3分析:(1)利用整体代入法即可求解y =asin (2x −π3)+b 的单调减区间;(2)结合x ∈[0,π2],利用正弦函数的性质求出sin (2x −π3)的取值范围,然后结合已知条件求解即可. (1)结合已知条件和正弦函数性质,由2k π+π2≤2x −π3≤2k π+3π2,k ∈Z ,解得k π+5π12≤x ≤k π+11π12,k ∈Z ,故函数f (x )的单调递减区间为[k π+5π12,k π+11π12],k ∈Z .(2)令t =2x −π3,∵0≤x ≤π2,∴−π3≤t ≤2π3,∴由正弦函数性质得,−√32≤sint =sin(2x −π3)≤1,故f (x )min =−√32a +b =−2,f (x )max =a +b =√3,由{−√32a +b =−2a +b =√3,解得{a =2b =−2+√3. 17、已知函数f (x )={cosx,−π⩽x <0,sinx,0⩽x ⩽π.(1)作出该函数的图象; (2)若f (x )=12,求x 的值;(3)若a ∈R ,讨论方程f (x )=a 的解的个数.答案:(1)图见解析;(2)x =−π3或π6或5π6;(3)当a >1或a <−1时,解的个数为0;当−1⩽a <0或a =1时,解的个数为1;当0⩽a <1时,解的个数为3. 分析:(1)根据正余弦函数的图象即可画出; (2)讨论x 的范围根据解析式即可求解;(3)方程f (x )=a 的解的个数等价于y =f (x )与y =a 的图象的交点个数,结合图象即可得出. (1)f (x )的函数图象如下:(2)当−π≤x <0时,f (x )=cosx =12,解得x =−π3,当0≤x ≤π时,f (x )=sinx =12,解得x =π6或5π6,综上,x =−π3或π6或5π6; (3)方程f (x )=a 的解的个数等价于y =f (x )与y =a 的图象的交点个数,则由(1)中函数图象可得,当a >1或a <−1时,解的个数为0;当−1⩽a <0或a =1时,解的个数为1;当0⩽a <1时,解的个数为3.18、已知函数f (x )=2cos 2x 2+√3sin x +a −1的最大值为1.(1)求函数f (x )的单调递减区间;(2)若x ∈[0,π2],求函数f (x )的值域.答案:(1)[2kπ+π3,2kπ+4π3],k ∈Z(2)[0,1]分析:(1)利用三角恒等变换化简函数解析式为y =A sin(ωx +φ)+B 的形式,ωx +φ整体替换进行单调区间的求解;(2)求出ωx +φ整体范围,根据正弦型函数图像求其值域﹒(1)f (x )=2cos 2x 2+√3sin x +a −1 =cosx +√3sinx +a =2sin (x +π6)+a .由f(x)max=2+a=1,解得a=−1.又f(x)=2sin(x+π6)−1,则2kπ+π2≤x+π6≤2kπ+3π2,k∈Z,解得2kπ+π3≤x≤2kπ+4π3,k∈Z,所以函数的单调递减区间为[2kπ+π3,2kπ+4π3],k∈Z;(2)由x∈[0,π2],则x+π6∈[π6,2π3],所以12≤sin(x+π6)≤1,所以0≤2sin(x+π6)−1≤1,所以函数f(x)的值域为[0,1].。
第五章三角函数章末总结体系构建题型整合题型1 同角三角函数基本关系式和诱导公式的应用例1 已知f(α)=sin2(π−α)⋅cos(2 π−α)⋅tan(−π+α)sin(−π+α)⋅tan(−α+3 π).(1)化简f(α);(2)若f(α)=18,且π4<α<π2,求cosα−sinα的值;(3)若α=−47 π4,求f(α)的值.答案:(1)f(α)=sin 2α⋅cosα⋅tanα(−sinα)(−tanα)=sinα⋅cosα.(2)由f(α)=sinα⋅cosα=18可知,(cosα−sinα)2=cos2α−2 sinα⋅cosα+sin2α=1−2 sinα⋅cosα=1−2×18=34,因为π4<α<π2,所以cosα<sinα,即cosα−sinα<0,所以cosα−sinα=−√32.(3)因为α=−47 π4=−6×2 π+π4,所以f(−47 π4)=cos(−47 π4)⋅sin(−47 π4)=cos(−6×2 π+π4)⋅sin(−6×2 π+π4)=cosπ4⋅sinπ4=√22×√22=12.方法归纳1.牢记两个基本关系式sin2α+cos2α=1及sinαcosα=tanα,并能应用这两个关系式进行三角函数的化简、求值、证明.2.诱导公式可概括为k⋅π2±α(k∈Z)的各三角函数值的化简公式.记忆规律是“奇变偶不变,符号看象限”.迁移应用1.(2021湖南长沙雅礼中学高一月考)已知sin(−π+θ)+2 cos(3 π−θ)=0 ,则sinθ+cosθsinθ−cosθ= .答案: 13解析: 因为sin(−π+θ)+2 cos(3 π−θ)=0 , 所以−sinθ−2 cosθ=0 , 所以tanθ=−2 ,所以sinθ+cosθsinθ−cosθ=tanθ+1tanθ−1=−2+1−2−1=13 .题型2 三角函数的图象与性质例2(1)函数y =cos(2x +π3) 图象的对称轴方程可能是( ) A.x =−π6B.x =−π12C.x =π6D.x =π12(2)函数f(x)=(1−cos x)sin x 在[−π,π] 上的图象大致为( )A. B.C.D.(3)若0<α<π2,g(x)=sin(2x +π4+α) 是偶函数,则α 的值为 . 答案:(1)A (2)C (3)π4解析: (1)令2x +π3=kπ(k ∈Z) ,得x =kπ2−π6(k ∈Z) ,令k =0 ,得该函数图象的一条对称轴为直线x =−π6 .(2)因为函数f(x)=(1−cos x)sin x 为奇函数,所以其图象关于原点对称,所以排除B. 当0<x <π2 时,f(x)>0 ,所以排除A . f(π2)=(1−cos π2)sin π2=1 ,所以排除D , 故选C.(3)若g(x)=sin(2x +π4+α) 为偶函数, 则π4+α=kπ+π2,k ∈Z ,所以α=kπ+π4,k ∈Z . 因为0<α<π2 ,所以α=π4 . 方法归纳正弦、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 迁移应用2.设函数f(x)=√2sin(2x −π4),x ∈R .(1)求函数f(x) 的最小正周期和单调递增区间; (2)求函数f(x) 在区间[π8,3 π4] 上的最小值和最大值,并求出取得最值时x 的值.答案:(1)函数f(x) 的最小正周期T =2 π2=π ,由2kπ−π2≤2x −π4≤2kπ+π2(k ∈Z) 得,kπ−π8≤x ≤kπ+3 π8(k ∈Z) ,所以函数f(x) 的单调递增区间是[kπ−π8,kπ+3 π8](k ∈Z) .(2)令t =2x −π4 ,则由π8≤x ≤3 π4可得0≤t ≤5 π4,所以当t =5 π4,即x =3 π4时,ymin=√2×(−√22)=−1 ,当t =π2, 即x =3 π8时,y max =√2×1=√2 .题型3 两角和与差的正弦、余弦与正切公式、二倍角公式的应用例3 (2021辽宁沈阳铁路实验中学高一月考)若tan(α−β)=13,tanβ=14,则tan 2α= . 答案: 7736解析: 由已知得tanα=tan[(α−β)+β]=tan(α−β)+tanβ1−tan(α−β)tanβ=13+141−13×14=711 ,所以tan 2α=2 tanα1−tan 2α=2×7111−(711)2=7736 .例4 求证:cos 2α1tan α2−tan α2=14sin 2α .答案:证明 左边=cos 2αtanα21−tan 2α2=12cos 2α⋅2 tanα21−tan 2α2=12cos 2α⋅tanα=12cosα⋅sinα=14sin 2α= 右边, 所以原等式成立. 方法归纳1.对于给值求值问题,即由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”,使“目标角”变成“已知角”.2.三角恒等式证明的常用方法:(1)执因索果法:证明的形式一般为化繁为简; (2)左右归一法:证明左、右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,即化异求同;(4)比较法:设法证明“左边- 右边=0 ”或“左边/右边=1 ”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到得到已知条件或明显的事实为止,就可以断定原等式成立. 迁移应用3.已知sin(π4+α)sin(π4−α)=16,α∈(π2,π) ,则sin 4α1+cos 2α 的值为 . 答案: −4√215解析:因为sin(π4+α)sin(π4−α)=16 ,所以sin(π4+α)⋅cos(π4+α)=16 ,因为2 sin(π4+α)⋅cos(π4+α)=sin(π2+2α) ,所以sin(π2+2α)=13 ,即cos 2α=13 .又α∈(π2,π) ,所以2α∈(π,2 π) ,所以sin 2α=−√1−cos 22α=−√1−(13)2=−2√23,所以sin 4α1+cos 2α=2 sin 2α⋅cos 2α1+1+cos 2α2=2×(−2√23)×131+1+132=−4√215.4.(sin 2α+cos 2α−1)(sin 2α−cos 2α+1)sin 4α= .答案: tanα 解析: 原式=sin 22α−(cos 2α−1)22 sin 2α⋅cos 2α=sin 22α−cos 22α+2 cos 2α−12 sin 2α⋅cos 2α=−2 cos 22α+2 cos 2α2 sin 2α⋅cos 2α=1−cos 2αsin 2α=2 sin 2α2 sinαcosα=sinαcosα=tanα .题型4 三角恒等变换的综合应用例5 (2021吉林辽源高一月考)已知函数f(x)=2√3sin xcos x +2 cos 2x −1 . (1)求函数f(x) 的单调递增区间;(2)当x ∈[0,π2] 时,求函数f(x) 的最大值及相应的x 的值. 答案: (1)f(x)=2√3sin xcos x +2 cos 2x −1=√3sin 2x +cos 2x =2 sin(2x +π6) ,令2kπ−π2≤2x +π6≤2kπ+π2(k ∈Z) , 得kπ−π3≤x ≤kπ+π6(k ∈Z) ,所以f(x) 的单调递增区间为[kπ−π3,kπ+π6](k ∈Z) . (2)由x ∈[0,π2] 可得π6≤2x +π6≤7 π6,所以当2x +π6=π2,即x =π6时,f(x) 取得最大值,最大值为2. 方法归纳利用二倍角公式降幂,利用两角和与差的正弦(余弦)公式化函数为f (x )=Asin (ωx +φ)+B(f(x)=Acos(ωx +φ)+B) 的形式,然后把ωx +φ 看作一个整体,利用正弦(余弦)函数的性质求解. 迁移应用5.(2021贵州铜仁高一月考)已知函数f(x)=sin 2x +2√3⋅sin xcos x −12cos 2x,x ∈R .(1)求f(x) 的最小正周期和单调递减区间;(2)若x 0(0≤x 0≤π2) 为f(x) 的一个零点,求sin 2x 0 的值.答案: (1)f(x)=sin 2x +2√3sin xcos x −12cos 2x =12(1−cos 2x)+√3sin 2x −12cos 2x =√3sin 2x −cos 2x +12 =2 sin(2x −π6)+12 则f(x) 的最小正周期T =2 π2=π .令π2+2kπ≤2x −π6≤3 π2+2kπ,k ∈Z 得,π3+kπ≤x ≤5 π6+kπ,k ∈Z ,所以函数f(x) 的单调递减区间为[π3+kπ,5 π6+kπ],k ∈Z .(2)若f(x0)=0,则2 sin(2x0−π6)+12=0,即sin(2x0−π6)=−14,因为0≤x0≤π2,所以2x0−π6∈[−π6,5 π6],所以cos(2x0−π6)=√154,所以sin 2x0=sin[(2x0−π6)+π6]=sin(2x0−π6)cosπ6+cos(2x0−π6)sinπ6=−14×√32+√154×12=√15−√38题型5 函数y=Asin(ω x+φ)性质的应用例6 (2021四川泸县第四中学高一月考)函数f(x)=√2sin(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,则下列说法正确的是( )A.函数f(x)在区间(−π2,0)上单调递增B.函数f(x)的最小正周期为2 πC.函数f(x)的图象关于点(π6,0)对称D.函数f(x)的图象可以由y=√2sinωx的图象向右平移5 π6个单位长度得到答案:D解析:由题图可得T4=7 π12−π3=π4,所以T=π,由2 πT=ω,得ω=2,因为f(x)的图象过(π3,0),(7 π12,−√2)两点,所以√2sin(π3×2+φ)=0⇒sin(π3×2+φ)=0⇒π3×2+φ=kπ(k∈Z),φ=kπ−2 π3(k∈Z),又|φ|<π2,所以当k=1时,φ=π3,所以函数f(x)=√2sin(2x+π3).由−π2+2kπ≤2x+π3≤π2+2kπ(k∈Z),解得kπ−5 π12≤x≤kπ+π12(k∈Z),当k=0时,f(x)的单调递增区间为(−5 π12,π12),所以A中说法错误;函数f(x)的最小正周期T=π,所以B中说法错误;由2x+π3=kπ(k∈Z)得,x=kπ2−π6(k∈Z),当k=1时,x=π3,所以f(x)图象的一个对称中心为(π3,0),所以C中说法错误;因为f(x)=√2sin(2x+π3)=√2sin[2(x+π6)],所以函数f(x)的图象可以由y=√2sin 2x的图象向右平移5 π6个单位长度得到,所以D中说法正确.故选D. 方法归纳根据函数的图象求解析式,先由图象的最高点、最低点确定A的值,根据函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ的值.进行函数图象平移变换时,应注意“左加右减”.迁移应用6.(多选)(2021江苏苏州星海中学高一调研)把函数y=sin 2x的图象沿x轴向左平移π6个单位长度,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)的图象,对于函数y=f(x)有以下四个判断,其中正确的有( )A.f(x)=2 sin(2x+π6)B.函数f(x)的图象关于点(π3,0)对称C.函数f(x)在[0,π6]上是增函数D.若函数y=f(x)+a在[0,π2]上的最小值为√3,则a=2√3答案:B; D解析:将函数y=sin 2x的图象向左平移π6个单位长度得到y=sin[2(x+π6)]=sin(2x+π3)的图象,再将纵坐标伸长到原来的2倍得到y=2 sin(2x+π3)的}图象,所以A不正确;y=f(π3)=2 sin(2×π3+π3)=2 sinπ=0,所以函数f(x)的图象关于点(π3,0)对称,所以B正确;由−π2+2kπ≤2x+π3≤π2+2kπ,k∈Z,得−5 π12+kπ≤x≤π12+kπ,k∈Z,即函数f(x)的单调增区间为[−5 π12+kπ,π12+kπ],k∈Z,当k=0时,f(x)的增区间为[−5 π12,π12],所以C不正确;y=f(x)+a=2 sin(2x+π3)+a,当0≤x≤π2时,π3≤2x+π3≤4 π3,故−√32≤sin(2x+π3)≤1,所以当2x+π3=4 π3,即x=π2时,函数f(x)取得最小值−√3,所以y min=−√3+a=√3,所以a=2√3,所以D正确.故选BD.题型6 三角函数的实际应用例7 如图所示,一条直角走廊宽2米.现有一转动灵活的平板车,其平板面为矩形ABEF,它的宽为1米.直线EF分别交直线AC、BC于M、N两点,过墙角D作DP⊥AC于点P,DQ⊥BC于点Q,且∠CAB=θ.(1)若平板车卡在直角走廊内,试求平板面EF的长(用θ表示);(2)若平板车想顺利通过直角走廊,其长度(设为l)不能超过多少米?答案: (1)由直角三角形中三角函数的定义得, DM =2sinθ,DN =2cosθ,MF =1tanθ,EN =tanθ ,所以EF =DM +DN −MF −EN =2sinθ+2cosθ−1tanθ−tanθ=2(sinθ+cosθ)−1sinθcosθ(0≤θ≤π2) .(2)若平板车想顺利通过直角走廊,则对任意角θ(0≤θ≤π2) ,平板车的长度不能超过l 的最小值. 设sinθ+cosθ=t,1≤t ≤√2 ,则sinθcosθ=t 2−12,所以l =2(sinθ+cosθ)−1sinθcosθ=4t−2t −1=4(t−1)+2t −1=4t+1+2t −1 ,因为y =4t+1,y =2t 2−1都是减函数,所以当t =√2 时,l 取得最小值4√2−2 .故若平板车想顺利通过直角走廊,则其长度不能超过(4√2−2) 米. 方法归纳在三角函数的实际应用中,要根据题干信息构造三角函数式,在一个三角函数式中同时含有sinθ+cosθ、sinθcosθ 时,需要用换元法求解,应注意新元的取值范围 迁移应用7.如图,某动物种群数量在某年1月1日低至700,7月1日高至900,其总量在此两值之间呈正弦型曲线变化.(1)求出种群数量y 关于时间t 的函数表达式;(其中t 以年初以来的月为计量单位) (2)估计当年3月1日该动物种群数量.答案: (1)设种群数量y 关于时间t 的解析式为y =Asin(ωt +φ)+B(A >0,ω>0,|φ|≤π2) ,则{−A +B =700,A +B =900, 解得A =100,B =800 .又T =2×(6−0)=12 ,所以ω=2 πT=π6 ,所以y =100 sin(π6t +φ)+800 . 又当t =6 时,y =900 ,所以900=100 sin(π6×6+φ)+800, 即sin(π+φ)=1,解得sinφ=−1,因为|φ|≤π2,所以φ=−π2,所以y=100 sin(π6t−π2)+800.(2)当t=2时,y=100 sin(π6×2−π2)+800=750,即当年3月1日该动物种群数量约是750.高考链接1.(2020课标Ⅱ,2,5分)若α为第四象限角,则( )A.cos 2α>0B.cos 2α<0C.sin 2α>0D.sin 2α<0答案:D解析:由α为第四象限角可得,3 π2+2kπ<α<2 π+2kπ,k∈Z,所以3 π+4kπ<2α<4 π+4kπ,k∈Z,此时2α的终边落在第三、四象限及y轴的非正半轴上,所以sin 2α<0,cos 2α的值可正、可负、可为零,故选D.2.(2020课标Ⅰ,7,5分)设函数f(x)=cos(ωx+π6)在[−π,π]的图象大致如图,则f(x)的最小正周期为( )A.10 π9B.7 π6C.4 π3D.3 π2答案:C解析:由题图可得,函数f(x)的图象过点(−4 π9,0),代入函数f(x)的解析式可得,cos(−4 π9ω+π6)=0,又(−4 π9,0)是函数f(x)的图象与x轴负半轴的第一个交点,所以−4 π9ω+π6=−π2,解得ω=32,所以函数f(x)的最小正周期T=2 πω=2 π32=4 π3,故选C.3.(2020课标Ⅰ,9,5分)已知α∈(0,π),且3 cos 2α−8 cosα=5,则sinα=( )A.√53B.23C.13D.√59答案:A解析:由3 cos 2α−8 cosα=5得,6 cos2α−8 cosα−8=0,即3 cos2α−4 cosα−4=0,解得cosα=−23或cosα=2(舍去),∵α∈(0,π),∴sinα=√1−cos2α=√53.故选A.4.(多选)(2020新高考Ⅰ,10,5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=( )A.sin(x +π3)B.sin(π3−2x) C.cos(2x +π6) D.cos(5 π6−2x) 答案: B ; C 解析:由题图可知T2=2 π3−π6=π2 ,所以T =π ,则|ω|=2 πT=2 ππ=2 ,所以A 错误.不妨取ω=2 ,则y =sin(2x +φ) ,当x =2 π3+π62=5 π12时,y =−1 ,所以2×5 π12+φ=3 π2+2kπ(k ∈Z) ,解得φ=2kπ+2 π3(k ∈Z) ,则函数的解析式为y =sin(2x +2 π3+2kπ)=sin(2x +π6+π2)=cos(2x +π6)=sin(π3−2x) ,故B 、C 正确.又cos(2x +π6)=−cos(5 π6−2x) ,故D 错误.故选BC.5.(2020天津,8,5分)已知函数f(x)=sin(x +π3) .给出下列结论: ①f(x) 的最小正周期为2 π ; ②f(π2) 是f(x) 的最大值;③把函数y =sin x 的图象上所有点向左平移π3 个单位长度,可得到函数y =f(x) 的图象.其中所有正确结论的序号是( ) A.①B.①③C.②③D.①②③ 答案: B解析:因为f(x)=sin(x +π3) ,所以T =2 π|ω|=2 π ,故①中结论正确; f(π2)=sin(π2+π3)=sin5 π6=12≠1 ,故②中结论不正确;将函数y =sin x 的图象上所有点向左平移π3个单位长度,得到y =sin(x +π3) 的图象,故③中结论正确.故选B.6.(2018天津,6,5分)将函数y =sin(2x +π5) 的图象向右平移π10 个单位长度,所得图象对应的函数( ) A.在区间[3 π4,5 π4] 上单调递增B.在区间[3 π4,π] 上单调递减C.在区间[5 π4,3 π2] 上单调递增D.在区间[3 π2,2 π] 上单调递减答案: A解析:将y =sin(2x +π5) 的图象向右平移π10 个单位长度,所得图象对应的函数解析式为y =sin[2(x −π10)+π5]=sin 2x ,当2kπ−π2≤2x ≤2kπ+π2(k ∈Z) ,即kπ−π4≤x ≤kπ+π4(k ∈Z) 时,y =sin 2x 单调递增,令k =1 ,则x ∈[3 π4,5 π4] ,所以y =sin 2x 在[3 π4,5 π4] 上单调递增,故选A.7.(2019课标Ⅱ,9,5分)下列函数中,以π2 为周期且在区间(π4,π2) 单调递增的是( ) A.f(x)=|cos 2x| B.f(x)=|sin 2x| C.f(x)=cos|x| D.f(x)=sin|x| 答案: A解析:对于选项A,作出f(x)=|cos 2x| 的部分图象,如图1所示,则f(x) 在(π4,π2) 上单调递增,且最小正周期T =π2 ,故A 正确.对于选项B,作出f(x)=|sin 2x| 的部分图象,如图2所示,则f(x) 在(π4,π2) 上单调递减,故B 不正确. 对于选项C,因为f(x)=cos|x|=cos x ,所以其最小正周期T =2 π ,故C 不正确.对于选项D,作出f(x)=sin|x| 的部分图象,如图3所示,显然f(x) 不是周期函数,故D 不正确.故选A.图1图2图38.(2019课标Ⅰ,5,5分)函数f(x)=sin x+xcos x+x2在[−π,π]的图象大致为( )A.B.C.D.答案:D解析:因为f(−x)=sin(−x)−xcos(−x)+(−x)2=−sin x+xcos x+x2=−f(x),所以f(x)是奇函数.又f(π)=sinπ+πcosπ+π2=π−1+π2>0 ,故选D.9.(2019天津,7,5分)已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π) 是奇函数,将y =f(x) 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x) .若g(x) 的最小正周期为2 π ,且g(π4)=√2 ,则f(3 π8)= ( )A.-2B.−√2C.√2D.2答案: C解析:因为f(x)=Asin(ωx +φ) 为奇函数,所以φ=kπ,k ∈Z ,又|φ|<π ,所以φ=0 ,所以f(x)=Asinωx ,则g(x)=Asin ωx 2 .由g(x) 的最小正周期T =2 π 得,ω2=2 πT =1 ,所以ω=2 . 又g(π4)=Asin π4=√22A =√2 ,所以A =2 , 所以f(x)=2 sin 2x , 所以f(3 π8)=2 sin 3 π4=√2 ,故选C.10.(2020北京,14,5分)若函数f(x)=sin(x +φ)+cos x 的最大值为2,则常数φ 的一个取值为 .答案: π2解析: ∵f(x)=sin(x +φ)+cos x 的最大值为2,∴cos x =1 ,解得x =2 kπ,k ∈Z ,且sin(x +φ)=sin(2kπ+φ)=sinφ=1 ,∴φ=π2+2nπ,n ∈Z , ∴φ 可取π2 .。
高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( ) A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125 所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43, 故选:C3、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C .4、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23 答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 7、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57. 又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时,sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误. 8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、下列各式中,值为12的是( )A .cos 2π12−sin 2π12B .tan22.5∘1−tan 222.5∘C .2sin195°cos195°D .√1+cos π62答案:BC分析:运用二倍角公式,结合诱导公式和特殊角的三角函数值的求法即可得到答案. 选项A ,cos 2π12−sin 2π12=cos (2×π12)=cos π6=√32,错误; 选项B ,tan22.5°1−tan 222.5°=12⋅2tan22.5°1−tan 222.5°=12tan45°=12,正确;选项C ,2sin195∘cos195∘=sin390∘=sin (360∘+30∘)=sin30∘=12,正确;选项D ,√1+cos π62=√1+√322=√2+√32,错误.故选:BC.11、(多选)已知θ∈(0,π),sinθ+cosθ=15,则( )A .θ∈(π2,π)B .cosθ=−35 C .tanθ=−34D .sinθ−cosθ=75答案:ABD分析:已知式平方求得sinθcosθ,从而可确定θ的范围,然后求得sinθ−cosθ,再与已知结合求得sinθ,cosθ,由商数关系得tanθ,从而可判断各选项.因为sinθ+cosθ=15①,所以(sinθ+cosθ)2=sin 2θ+2sinθcosθ+cos 2θ=125,所以2sinθcosθ=−2425.又θ∈(0,π),所以sinθ>0,所以cosθ<0,即θ∈(π2,π),故A 正确.(sinθ−cosθ)2=1−2sinθcosθ=4925,所以sinθ−cosθ=75②,故D 正确.由①②,得sinθ=45,cosθ=−35,故B 正确.tanθ=sinθcosθ=−43,故C 错误. 故选:ABD . 填空题12、当θ∈(0,π2)时,若cos (5π6−θ)=−12,则sin (θ+π6)的值为_________.答案:√32##12√3 分析:先由已知条件求出sin (5π6−θ),然后利用诱导公式可求得结果. ∵θ∈(0,π2),∴5π6−θ∈(π3,5π6), ∴sin (5π6−θ)=√1−cos 2(5π6−θ)=√32, ∴sin (θ+π6)=sin [π−(5π6−θ)]=sin (5π6−θ)=√32. 所以答案是:√3213、已知sinα=2cosα,则sin 2α+2sinαcosα=______. 答案:85##1.6分析:根据题意,由同角三角函数关系可得tanα的值,而sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α,最后利用齐次式化成关于tanα的分式即可解.解:由sinα=2cosα,得tanα=sinαcosα=2, 则sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=22+2×222+1=85.所以答案是:85.14、已知f (x )=sin (ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω=______.答案:143分析:由题意可得函数的图象关于直线x=π4对称,再根据f(x)在区间(π6,π3)上有最小值,无最大值,可得π4ω+π3=2kπ+3π2(k∈Z),由此求得ω的值.依题意,当x=π6+π32=π4时,y有最小值,即sin(π4ω+π3)=−1,则π4ω+π3=2kπ+3π2(k∈Z),所以ω=8k+143(k∈Z).因为f(x)在区间(π6,π3)上有最小值,无最大值,所以π3−π4≤T2=πω,即ω≤12,令k=0,得ω=143.所以答案是:143解答题15、已知函数f(x)=2sinxcosx−2√3sin2x+√3.(1)求函数f(x)的最小正周期及其单调递增区间;(2)当x∈[−π6,π6],时,a−f(x)≤0恒成立,求a的最大值.答案:(1)最小正周期π,单调递增区间为[kπ−5π12,kπ+π12],k∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f(x)为f(x)=2sin(2x+π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x的范围可求2x+π3∈[0,2π3],进而可求f(x)的值域,故可求a的范围.(1)f(x)=2sinxcosx−2√3sin2x+√3=sin2x+√3cos2x=2sin(2x+π3)故函数f(x)的最小正周期T=2π2=π.由2kπ-π2≤2x+π3≤2kπ+π2得kπ−5π12≤x≤kπ+π12(k∈Z).∴函数f(x)的单调递增区间为[kπ−5π12,kπ+π12],k∈Z.(2)∵x∈[−π6,π6],∴2x+π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.。
第24讲 三角函数概念及定义5种题型总结【知识点梳理】知识点一:三角函数基本概念 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. (4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα. (2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα 三角函数的性质如下表:三角函数定义域第一象限符号 第二象限符号 第三象限符号 第四象限符号 αsinR + + - - αcosR+--+αtan }2|{Z k k ∈+≠,ππαα + - + -记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. 【题型目录】题型一:与角α终边相同的角的集合的表示 题型二:判断等分角的象限问题 题型三:扇形的弧长、面积公式的计算 题型四:任意角三角函数的定义 题型五:三角函数值的正负判断 【典例例题】题型一:与角α终边相同的角的集合的表示【例1】(2022·全国·高一课时练习)将-1485°化成()202,k k απαπ+≤<∈Z 的形式是( ) A .π8π4-B .784π-πC .104π-πD .7104π-π【答案】D【分析】由3602rad π︒=或180rad π︒=转换.【详解】因为14855360315-︒=-⨯︒+︒,3602rad π︒=,7315rad 4π︒=,所以-1485°可化成7104π-π.故选:D .【例2】(2022·陕西渭南·高一期末)与2022︒终边相同的角是( ) A .488-︒ B .148-︒C .142︒D .222︒【答案】D【分析】与α终边相同的角可表示为2,Z k k απ+∈. 【详解】∵20225360222︒=⨯︒+︒, ∵与2022︒终边相同的角是222︒. 故选:D【例3】(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是( ) A .245k π+,k Z ∈ B .93604k π⋅+,k Z ∈ C .360315k ⋅-,k Z ∈ D .54k ππ+,k Z ∈ 【答案】C【分析】 要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可. 【详解】首先角度制与弧度制不能混用,所以选项AB 错误; 又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确. 故选:C .【例4】(2022·河南南阳·高一期末)已知角2022α=,则角α的终边落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】利用象限角的定义判断可得出结论.【详解】因为20222225360α==+⨯,而222是第三象限角,故角α的终边落在第三象限. 故选:C.【例5】(2022·全国·高一课时练习)终边落在直线3y x =上的角α的集合为( ) A .{}18030,Z k k αα=⋅︒+︒∈ B .{}18060,Z k k αα=⋅︒+︒∈ C .{}36030,k k αα=⋅︒+︒∈Z D .{}36060,Z k k αα=⋅︒+︒∈【答案】B【分析】先确定3y x =的倾斜角为60,再分当终边在第一和三象限时角度的表达式再求解即可. 【详解】易得3y x =的倾斜角为60,当终边在第一象限时,60360k α=︒+⋅︒,k ∈Z ;当终边在第三象限时,240360k α=︒+⋅︒,k ∈Z .所以角α的集合为{}18060,Z k k αα=⋅︒+︒∈. 故选:B【例6】(2022·全国·高三专题练习(多选题))如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为( ) A .90︒ B .360︒C .450︒D .2330︒【答案】AC根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项. 【详解】因为角α与角45γ+︒的终边相同,故45360k γα,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈, 故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确, 令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ; 故BD 错误. 故选:AC.【例7】(2022·全国·高一课时练习)下列说法中正确的是( ) A .第二象限角大于第一象限角B .若()360360180k k k α⋅︒<<⋅︒+︒∈Z ,则α为第一或第二象限角C .钝角一定是第二象限角D .三角形的内角是第一或第二象限角 【答案】C【分析】利用任意角的知识,对选项分别判断即可. 【详解】对A 选项,如21030-︒<︒,故A 错误.对B 选项,α为第一或第二象限角或终边落在y 轴正半轴上的角.故B 错误. 对C 选项,因为钝角大于90°且小于180°,所以钝角一定是第二象限角,故C 正确. 对D 选型,当三角形的一个内角为90°时,不是象限角,故D 错误. 故选: C.【例8】(2022·全国·高一课时练习)已知{}4536090360k k ααα∈︒+⋅︒≤≤︒+⋅︒,则角α的终边落在的阴影部分是( )A .B .C .D .【答案】B【分析】令0k =即可判断出正确选项.【详解】令0k =,得4590α︒≤≤︒,则B 选项中的阴影部分区域符合题意. 故选:B . 【题型专练】1.(2022·河南安阳·高一期末)把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-【答案】B【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】∵37515360-=-︒-︒︒,∵π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B2.(2022·广西·北海市教育教学研究室高一期末)下列各角中,与1840︒ 角终边相同的角是( ) A .40︒ B .220︒C .320︒D .400-︒【答案】A【分析】将1840︒化为405360︒+⨯︒,即可确定答案.【详解】因为1840405360︒=︒+⨯︒,故40︒角的终边与1840︒的终边相同, 故选:A3.(2022·全国·高一课时练习)与2022︒终边相同的角可以为___________.(填写一个符合题意的角即可) 【答案】222︒(答案不唯一)【分析】终边相同的角,相差360︒的整数倍,据此即可求解【详解】∵()2022360k k α︒=︒⨯+∈Z ,当5k =时,222α=︒,∵与2022︒终边相同的角可以为222︒, 故答案为:222°(答案不唯一)4.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为( )A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭ZB .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭ZD .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z【答案】D 【解析】 【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解. 【详解】 解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D. 【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.5.(2022·全国·高一课时练习)如图,用弧度制表示终边落在阴影部分(包括边界)的角的集合:______.【答案】π5π2π2πZ 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭,【分析】将角度化为弧度,结合任意角概念表示出来即可. 【详解】因为π5π757518012︒=⨯=,π306-︒=-,结合图像可看作π5π,612⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角的概念可表示为π5π2π2π,Z 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭.故答案为:π5π2π2π,Z 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭.6.(2022·西藏·林芝市第二高级中学高一期末)5π3-的角化为角度制的结果为_______.【答案】300-【分析】利用角度与弧度的互化即可求得5π3-对应角度制的结果【详解】55π=18030033⎛⎫--⨯=- ⎪⎝⎭故答案为:300-7.(2022·全国·高三专题练习(多选题))下列条件中,能使α和β的终边关于y 轴对称的是( ) A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z【答案】BD 【解析】 【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可. 【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意; 选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称. 故选:BD.8.(2022·全国·高一课时练习)如果角α与角x +45°具有相同的终边,角β与角x -45°具有相同的终边,那么α与β之间的关系是( ) A .0αβ+=︒B .90αβ-=︒C .()360k k αβ+=⋅︒∈ZD .()36090k k αβ-=⋅︒+︒∈Z【答案】D【分析】先根据终边相同的角分别表达出,αβ,再分析αβ+,αβ-即可.【详解】利用终边相同的角的关系,得()36045n x n α=⋅︒++︒∈Z ,()36045m x m β=⋅︒+-︒∈Z . 则()()3602,m n x n m αβ+=+⋅︒+∈∈Z Z 与x 有关,故AC 错误;又()()36090,n m n m αβ-=-︒+︒∈∈Z Z .因为m ,n 是整数,所以n -m 也是整数,用()k k ∈Z 表示,所以()36090k k αβ-=⋅︒+︒∈Z .故选:D .9.(2022·全国·高一课时练习)若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称【答案】C【分析】根据角θ与角θ-的终边关于x 轴对称即可得解.【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C10.(2023·全国·高三专题练习)集合|,4k k k Z παπαπ⎧⎫≤≤+∈⎨⎬⎩⎭中的角所表示的范围(阴影部分)是( )A .B .C .D .【答案】B【分析】对k 按奇偶分类讨论可得.【详解】当k =2n (n ∵Z )时,2n π≤α≤2n π+4π(n ∵Z ),此时α的终边和0≤α≤4π的终边一样,当k =2n +1(n ∵Z )时,2n π+π≤α≤2n π+π+4π (n ∵Z ),此时α的终边和π≤α≤π+4π的终边一样.故选:B .题型二:判断等分角的象限问题【例1】(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈,则α的终边在( ) A .第一、三象限 B .第一、二象限 C .第二、四象限 D .第三、四象限【答案】A 【解析】 【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限. 【详解】解:因为18045,k k Z α=⋅+∈,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈,其终边在第三象限; 当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈,其终边在第一象限. 综上,α的终边在第一、三象限. 故选:A.【例2】(2022·江西上饶·高一阶段练习多选)若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角【答案】AB【分析】由α与α-关于x 轴对称,即可判断AD ;由已知可得222k k ππαππ+<<+,Z k ∈,再根据不等式的性质可判断B ;由32πα+是第一象限角判断C . 【详解】解:因为α与α-关于x 轴对称,而α是第二象限角,所以α-是第三象限角, 所以πα-是第一象限角,故A 正确,D 错误; 因为α是第二象限角,所以222k k ππαππ+<<+,k Z ∈,所以422k k παπππ+<<+,Z k ∈,故2α是第一或第三象限角,故 B 正确; 因为α是第二象限角,所以32πα+是第一象限角,故C 错误. 故选:AB . 【题型专练】1.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可. 【详解】∵角α的终边在第一象限, ∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈, 当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限, 当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限, 故选:D.2.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是( )A .sin 2θB .cos2θ C .sin 2θ D .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角, 所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0. 而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .3.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】 【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由cos cos 22αα=-,知cos 02α≤,由此能判断出2α所在象限. 【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈, 所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角; 当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角, 因为cos cos 22αα=-,所以cos 02α≤,所以2α为第三象限角.故选:C .题型三:扇形的弧长、面积公式的计算【例1】(2022·河南·郑州四中高三阶段练习(文))已知扇形OAB 的圆心角为2,弦长2AB =,则扇形的弧长等于( ) A .1sin1B .2sin1C .1cos1D .2cos1【答案】B【分析】求得扇形的半径,从而求得扇形的弧长.【详解】扇形的半径112sin1sin1ABr ==, 所以扇形的弧长等于122sin1sin1r α⨯=⨯=. 故选:B【例2】(2022·浙江·高三开学考试)如图是杭州2022年第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4【答案】C【分析】通过弧长比可以得到OA 与OB 的比,接着再利用扇形面积公式即可求解 【详解】解:设AOD θ∠=,则12,l OA l OB θθ=⋅=⋅,所以122l OA l OB==,即2OA OB =, 所以12221222111222231122OA l OB l OB l OB l S S OB l OB l ⋅-⋅⋅-⋅===⋅⋅, 故选:C【例3】(2022·全国·高三专题练习)已知扇形的周长为4 cm ,当它的半径为________ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm 2. 【答案】 1 2 1 【解析】 【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα,所以答案为1;2;1.【例4】(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】 2sin1; 211sin 1tan1-. 【解析】 【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可. 【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S , 故答案为:2sin1;211sin 1tan1-. 【例5】(2022·全国·高一课时练习多选题)中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,如图,设扇形的面积为1S ,其圆心角为θ,圆面中剩余部分的面积为2S ,当1S 与2S 51-时,扇面为“美观扇面”5 2.236)( )A .122S S θπθ=- B .若1212S S =,扇形的半径3R =,则12S π= C .若扇面为“美观扇面”,则138θ≈D .若扇面为“美观扇面”,扇形的半径20R =,则此时的扇形面积为(20035 【答案】AC【分析】首先确定12,S S 所在扇形的圆心角,结合扇形面积公式可确定A 正确;由12122S S θπθ==-可求得θ,代入扇形面积公式可知B 错误;由125122S S θπθ-==-即可求得θ,知C 正确;由扇形面积公式可直接判断出D 错误.【详解】对于A ,1S 与2S 所在扇形的圆心角分别为θ,2πθ-,()2122121222r S S r θθπθπθ⋅⋅∴==--⋅,A 正确; 对于B ,12122S S θπθ==-,23πθ∴=,2111293223S R πθπ∴=⋅⋅=⨯⨯=,B 错误; 对于C ,125122S S θπθ-==-,()35θπ∴=-,()3 2.236180138θ∴≈-⨯≈,C 正确; 对于D ,()()2111354002003522S R θππ=⋅⋅=⨯-⨯=-,D 错误.故选:AC.【题型专练】1.(2022·上海市松江二中高一期末)已知扇形的圆心角为135︒,扇形的弧长为3π,则该扇形所在圆的半径为___________. 【答案】4【分析】利用弧长公式直接求得. 【详解】扇形的圆心角为135︒,为34π,设半径为r , 由弧长公式可得:334r ππ=,解得:4r =. 故答案为:42.(2022·全国·高一学业考试)已知扇形的周长是12,面积是8,则扇形的圆心角的弧度数可能是( ) A .1 B .4C .2D .3【答案】AB【分析】利用扇形的弧长与面积公式建立方程组求解,再利用圆心角公式.【详解】设扇形的半径为r ,弧长为l ,面积为S ,圆心角为α,则212l r +=,182S lr ==,解得2r =,8l =或4r =,4l ,则4lrα==或1.故C ,D 错误. 故选:AB .3.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A 1133-B 1143-C 933-D 943-【答案】B 【解析】 【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案. 【详解】解:如图,连接OC , 因为C 是AB 的中点, 所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线, 即2OD OA OB ===, 又60AOB ∠=︒, 所以2AB OA OB ===, 则3OC =23CD = 所以(2223114322CD s AB OA -=+=+=故选:B.4.(2022·全国·高三专题练习)玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.某扇形玉雕壁面尺寸(单位:cm )如图所示,则该玉雕壁画的扇面面积约为( )A .2160cmB .23200cmC .23350cmD .24800cm【答案】D【分析】根据扇形的面积公式,利用大扇形面积减去小扇形面积即可求解. 【详解】易知该扇形玉雕壁画可看作由一个大扇形剪去一个小扇形得到, 设大、小扇形所在圆的半径分别为1r ,2r ,相同的圆心角为θ, 则1216080r r θ==,得122r r =,又因为1240r r -=, 所以180r =,240r =,该扇形玉雕壁画面积12111608022S r r =⨯⨯-⨯⨯()2111608080404800cm 22=⨯⨯-⨯⨯=. 故选:D .5.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB 51-,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB 51-.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为( )A 51- B 51-C 352D 52【答案】D 【解析】 【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果. 【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,2151S S -=,2S r π=, 所以)122515124S Sr αππ-==, 因为剪下扇形OAB 51-, 所以2512r r r παπ--=(35απ=, 所以))(2515135355355244S S απππ--+===.故选:D.6.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】 【分析】计算AOD ∠,再利用扇形的面积公式求解. 【详解】由题意可知,圆O 的半径为1,即1OA OD ==, 又1AD =,所以OAD △为正三角形,∵3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π7.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π 【解析】 【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解. 【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长2222290060C r l rl ππ=+≥=,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立, 所以()15BD DA cm π+=.又2BD DA =, 所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=. 故答案为:10π题型四:任意角三角函数的定义【例1】(2021·天津市武清区杨村第一中学高一阶段练习)已知函数()log 23a y x =++的图象恒过定点A ,若角α的顶点与原点重合,始边与x 轴的非负半轴重合,且点A 在角α的终边上,则sin α的值为( )A .17B 417C 310D .10【答案】C【分析】先由对数函数图象的特征求出定点()1,3A -,再由三角三函数的定义求解即可 【详解】函数()log 23a y x =++的图象恒过定点()1,3A -, 且点()1,3A -在角α的终边上, 所以()223sin 1331010α==-+,故选:C【例2】(2022·黑龙江·大庆市东风中学高一期末)已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( ) A .3B .12-C 3D .12【答案】C【分析】根据三角函数的定义即可求出.【详解】因为角α的终边与单位圆交于点13,22P ⎛⎫- ⎪⎝⎭,所以根据三角函数的定义可知,3sin 2y α==. 故选:C .【例3】(2022·陕西渭南·高一期末)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12 B .1 C .2D .52【答案】C【分析】由三角函数定义求得m 值. 【详解】由题意31tan 2m m θ-==,解得2m =. 故选:C .【题型专练】1.(2022·陕西渭南·高一期末)已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22 B .225 C .434 D 434【答案】D【分析】根据sin 0θ>,可判断点()2,P y -位于第二象限,利用正弦函数的定义列方程求解即可.【详解】解:因为()2,P y -是角θ终边上一点,22sin 05θ=>,故点()2,P y -位于第二象限, 所以0y >,2222sin 5(2)yy θ==-+, 整理得:21732y =,因为0y >,所以43417y =. 故选:D.2.(2022·陕西渭南·高一期末)已知角α的终边经过点()2,1P -,则sin α=( )A 5B 5C .12-D .-2【答案】A【分析】根据三角函数的定义即可得解.【详解】解:因为角α的终边经过点()2,1P -,所以15sin 541α==+. 故选:A.3.(2022·江苏省如皋中学高一期末多选)已知函数()()log 2401a f x x a a =-+>≠且的图象经过定点A ,且点A 在角θ的终边上,则11tan sin θθ+的值可能是( ) A .2B .3C 171+D 171+【答案】AC【分析】先由函数可知点A 的坐标,再由三角函数的定义可求解.【详解】由题意,可知(3,4)A 或(1,4)A ,当点是(3,4)A 时,由三角函数的定义有22444tan ,sin 3534θθ===+,所以11352tan sin 44θθ+=+=; 当点是(1,4)A 时, 由三角函数的定义有22444tan 4,sin 11714θθ====+, 所以11117171tan sin 444θθ++=+=. 故选:AC4.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin α=,则m 的值为______. 【答案】5±或0【分析】根据三角函数的定义列方程即可求解.【详解】由题意可知()222sin 43m m m α==-+,解得5m =±或0. 故答案为:5±或05.(2023·全国·高三专题练习)已知角α的终边与单位圆的交点为P 1(,)2y -,则sin tan αα=______. 【答案】32- 【分析】根据单位圆求出y ,然后由三角函数定义求得sin ,tan αα,再相乘可得.【详解】由题意2114y +=,32y =±, 32y =时,3sin 2α=,tan 3α=-,3sin tan 2αα=-, 32y =-时,3sin 2α=-,tan 3α=,3sin tan 2αα=-, 综上,3sin tan 2αα=-. 故答案为:32-. 题型五:三角函数值的正负判断【例1】(2022·浙江·诸暨市教育研究中心高二学业考试)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】直接由各象限三角函数的符号判断即可.【详解】由sin 0θ<可知θ的终边在第三象限或第四象限,又tan 0θ>,则θ的终边在第三象限.故选:C.【例2】(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 【答案】-1【分析】根据在第四象限三角函数的符号,化简计算y 值.【详解】因为角θ是第四象限角,所以sin 0θ<,cos 0θ>,tan 0θ<,所以sin cos tan 1111sin cos tan y θθθθθθ=++=-+-=-. 故答案为:-1.【例3】(2023·全国·高三专题练习)已知角θ在第二象限,且sinsin 22θθ=-,则角2θ在( ) A .第一象限或第三象限B .第二象限或第四象限C .第三象限D .第四象限 【答案】C 【分析】由题可得角2θ在第一或第三象限,再结合三角函数值的符号即得. 【详解】∵角θ是第二象限角,∵θ∵(2,2),Z 2k k k ππππ++∈,∵(,)242k k θππππ∈++,Z k ∈, ∵角2θ在第一或第三象限, ∵sinsin 22θθ=-,∵sin 02θ<, ∵角2θ在第三象限. 故选:C.【例4】(2022·全国·高一课时练习)(多选)下列三角函数值中符号为负的是( )A .sin100︒B .()cos 220-︒C .()tan 10-D .cos π 【答案】BCD【分析】根据各交所在象限判断三角函数的正负情况.【详解】因为90100180︒<︒<︒,所以sin100︒角是第二象限角,所以sin1000︒>;因为270220180-︒<-︒<-︒,220-︒角是第二象限角,所以()cos 2200-︒<;因为71032ππ-<-<-,所以角10-是第二象限角,所以()tan 100-<;cos 10π=-<;故选:BCD .【例5】(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】 sin cos 0αα⋅<,α是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.【例6】(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.【题型专练】1.(2022·全国·高一课时练习)在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点()1,P m -()0m ≠,则下列各式的值一定为负的是( )A .cos αB .sin cos αα-C .sin cos ααD .sin 2πα⎛⎫- ⎪⎝⎭ 【答案】AD【分析】由已知角终边上的点可得2sin 1m m α=+,21cos 1m α=-+,tan m α=-,结合诱导公式判断各项的正负,即可得答案.【详解】由题意知:2sin 1m m α=+,21cos 01m α=-<+,tan m α=-.∵不确定m 的正负,∵sin cos αα-与sin cos αα的符号不确定. ∵sin cos 02παα⎛⎫-=< ⎪⎝⎭, ∵一定为负值的是A ,D 选项.故选:AD2.(2022河南开封·高一期末)已知点()tan ,sin P αα在第三象限,则角α在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】∵点()tan ,sin P αα在第三象限,∵tan 0sin 0αα<⎧⎨<⎩,∵α在第四象限.故选:D. 3.(2022全国高一课时练习)在ABC 中,A 为钝角,则点()cos ,tan P A B ( )A .在第一象限B .在第二象限C .在第三象限D .在第四象限 【答案】B【解析】在ABC 中,A 为钝角,则B 为锐角,则cos 0,tan 0A B <>,则点()cos ,tan P A B 在第二象限, 故选:B4.(2021·全国高一课时练习)“角θ是第一或第三象限角”是“sin cos 0>θθ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】角θ是第一象限角时,sin 0,cos 0θθ,则sin cos 0>θθ;若角θ是第三象限角,sin 0,cos 0θθ<<,则sin cos 0>θθ.故“角θ是第一或第三象限角”是“sin cos 0>θθ”的充分条件.若sin cos 0>θθ,即sin 0,cos 0θθ或sin 0,cos 0θθ<<,所以角θ是第一或第三象限角.故“角θ是第一或第三象限角”是“sin cos 0>θθ”的必要条件.综上,“角θ是第一或第三象限角”是“sin cos 0>θθ”的充要条件.故选:C.5.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.【详解】解:∵cos 0θ<,且tan 0θ<,∵θ是第二象限角, ∵sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.6.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要 【答案】B【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.。
最新课程标准:能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式.知识点一两角和的余弦公式cos(α+β)=cos_αcos_β—sin_αsin_β,简记为C(α+β),使用的条件为α,β为任意角.知识点二两角和与差的正弦公式名称简记符号公式使用条件两角和的正弦S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_βα,β∈R两角差的正弦S(α—β)sin(α—β)=sin_αcos_β—cos_αsin_βα,β∈R错误!公式的记忆方法(1)理顺公式间的联系.C(α+β)错误!C(α—β)错误!S(α—β)错误!S(α+β)(2)注意公式的结构特征和符号规律.对于公式C(α—β),C(α+β),可记为“同名相乘,符号反”.对于公式S(α—β),S(α+β),可记为“异名相乘,符号同”.公式逆用:sinαcosβ+cosαsinβ=sin(α+β),sinαcosβ—cosαsinβ=sin(α—β),cosαcosβ+sinαsinβ=cos(α—β),cosαcosβ—sinαsinβ=cos(α+β).知识点三两角和与差的正切公式名称公式简记符号使用条件两角和的正切tan(α+β)=错误!T(α+β)α,β,α+β≠kπ+错误!(k∈Z)两角差的正切tan(α—β)=错误!T(α—β)α,β,α—β≠kπ+错误!(k∈Z)错误!公式T(α±β)(1)公式T(α±β)的右侧为分式形式,其中分子为tanα与tanβ的和或差,分母为1与tanαtanβ的差或和.(2)符号变化规律可简记为“分子同,分母反”.[教材解难]1.教材P217思考能.例如把—β代入β由C(α—β)可求出C(α+β).2.教材P219思考成立.方法一:sin错误!=sin错误!=cos错误!或cos错误!=cos错误!=sin错误!.方法二:由于sin错误!=sin错误!cos α—cos错误!sin α=错误!(cos α—sin α),cos错误!=cos错误!cos α—sin错误!sin α=错误!(cos α—sin α),故sin错误!=cos错误!.[基础自测]1.sin 15°cos 75°+cos 15°sin105°等于()A.0 B.错误!C.错误!D.1解析:sin 15°cos 75°+cos 15°sin 105°=sin 15°cos 75°+cos 15°sin 75°=sin(15°+75°)=sin 90°=1.答案:D2.设α∈错误!,若sin α=错误!,则错误!cos错误!=()A.错误!B.错误!C.—错误!D.—错误!解析:易得cos α=错误!,则错误!cos错误!=错误!错误!=错误!.答案:B3.已知tan α=4,tan β=3,则tan(α+β)=()A.错误!B.—错误!C.错误!D.—错误!解析:tan(α+β)=错误!=错误!=—错误!.答案:B4.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.解析:由sin α+cos β=1与cos α+sin β=0分别平方相加得sin2α+2sin αcos β+cos2β+cos2α+2cos αsin β+sin2β=1,即2+2sin αcos β+2cos αsin β=1,所以sin(α+β)=—错误!.答案:—错误!题型一给角求值[教材P219例4]例1利用和(差)角公式计算下列各式的值:(1)sin 72°cos 42°—cos 72°sin 42°;(2)cos 20°cos 70°—sin 20°sin 70°;(3)错误!.【解析】(1)由公式S(α—β),得sin 72°cos 42°—cos 72°sin 42°=sin(72°—42°)=sin 30°=错误!.(2)由公式C(α+β),得cos 20°cos 70°—sin 20°sin 70°=cos(20°+70°)=cos 90°=0.(3)由公式T(α+β)及tan 45°=1,得错误!=错误!=tan(45°+15°)=tan 60°=错误!.和、差角公式把α±β的三角函数式转化成了α,β的三角函数式.如果反过来,从右到左使用公式,就可以将上述三角函数式化简.教材反思解决给角求值问题的方法(1)对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.(2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子、分母形式进行约分,解题时要逆用或变用公式.跟踪训练1求值:(1)cos 105°;(2)错误!;(3)错误!.解析:(1)cos 105°=cos(60°+45°)=cos 60°cos 45°—sin 60°sin 45°=错误!×错误!—错误!×错误!=错误!.(2)错误!=错误!=错误!=错误!=错误!=错误!.(3)错误!=错误!=tan 45°=1.(1)105°=60 °+45°(2)找到31°、91°、29 °之间的联系利用公式化简求值.题型二给值求值例2已知错误!<β<α<错误!,cos(α—β)=错误!,sin(α+β)=—错误!,求cos 2α与cos 2β的值.【解析】因为错误!<β<α<错误!,所以0<α—β<错误!,π<α+β<错误!.所以sin(α—β)=错误!=错误!=错误!,cos(α+β)=—错误!=—错误!=—错误!.所以cos 2α=cos[(α+β)+(α—β)]=cos(α+β)cos(α—β)—sin(α+β)sin(α—β)=错误!×错误!—错误!×错误!=—错误!,cos 2β=cos[(α+β)—(α—β)]=cos(α+β)cos(α—β)+sin(α+β)sin(α—β)=错误!×错误!+错误!×错误!=—错误!.1.正确判断α—β,α+β的范围是求解前提.2.巧妙利用角的变换方法,是求解此类题目常用方法.方法归纳给值(式)求值的策略(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.跟踪训练2本例条件变为:错误!<β<α<错误!,sin(α—β)=错误!,sin(α+β)=—错误!,求sin 2β的值.解析:因为错误!<β<α<错误!,所以0<α—β<错误!,π<α+β<错误!π.所以cos(α—β)=错误!,cos(α+β)=—错误!,sin 2β=sin[(α+β)—(α—β)]=sin(α+β)cos(α—β)—cos(α+β)sin (α—β)=错误!×错误!—错误!×错误!=0.(1)由已知求出α—β、α+β的范围.(2)2β=(α+β)—(α—β).(3)利用公式求值.题型三给值求角例3已知cos α=错误!,sin(α+β)=错误!,0<α<错误!,0<β<错误!,求角β的值.【解析】因为0<α<错误!,cos α=错误!,所以sin α=错误!.又因为0<β<错误!,所以0<α+β<π.因为sin(α+β)=错误!<sin α,所以cos(α+β)=—错误!,所以sin β=sin[(α+β)—α]=sin(α+β)cos α—cos(α+β)sin α=错误!×错误!—错误!×错误!=错误!.又因为0<β<错误!,所以β=错误!.(1)已知α的范围及cosα,求sinα.(2)求α+β的范围及sin(α+β),求cos(α+β).(3)利用sinβ=sin[(α+β)—α],求值.方法归纳解决给值(式)求角问题的方法解决此类题目的关键是求出所求角的某一三角函数值,而三角函数的选取一般要根据所求角的范围来确定,当所求角范围是(0,π)或(π,2π)时,选取求余弦值,当所求角范围是错误!或错误!时,选取求正弦值.跟踪训练3已知tan(α—β)=错误!,tan β=—错误!,α,β∈(0,π),求2α—β的值.解析:tan α=tan[(α—β)+β]=错误!=错误!=错误!.又因为α∈(0,π),而tan α>0,所以α∈错误!.tan(2α—β)=tan[α+(α—β)]=错误!=错误!=1.因为tan β=—错误!,β∈(0,π),所以β∈错误!,所以α—β∈(—π,0).由tan(α—β)=错误!>0,得α—β∈错误!,所以2α—β∈(—π,0).又tan(2α—β)=1,所以2α—β=—错误!.(1)先求tanα=tan[(α—β)+β](2)再求tan(2α—β)=tan[α+(α—β)](3)由已知求2α—β的范围,最后求值易错易误忽略条件中隐含的角的范围而致错例已知tan2α+6tan α+7=0,tan2β+6tan β+7=0,α,β∈(0,π),且α≠β,求α+β的值.【错解】由题意知tan α,tan β是方程x2+6x+7=0的两根,由根与系数的关系得:错误!∴tan(α+β)=错误!=错误!=1.∵0<α<π,0<β<π,∴0<α+β<2π,∴α+β=错误!或α+β=错误!π.【错因分析】由12知tan α<0,tan β<0.角α,β都是钝角,上述解法忽视了这一隐含条件.【正解】由错误!易知tan α<0,tan β<0.∵α,β∈(0,π)∴错误!<α<π,错误!<β<π.∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=错误!π.【点评】在给值求角或给式求角时,由于三角函数知识间及与其他知识间都有较为密切的联系,一些隐含的制约条件不易被发现,容易导致角的范围扩大.解答此类问题时一定要仔细挖掘题目中的隐含条件才能有效地避免失误.课时作业38一、选择题1.sin 105°的值为()A.错误!B.错误!C.错误!D.错误!解析:sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=错误!×错误!+错误!×错误!=错误!.答案:D2.sin 20°cos 10°—cos 160°sin 10°=()A.—错误!B.错误!C.—错误!D.错误!解析:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=错误!.答案:D3.若cos α=—错误!,α是第三象限的角,则sin错误!=()A.—错误!B.错误!C.—错误!D.错误!解析:因为cos α=—错误!,α是第三象限的角,所以sin α=—错误!,由两角和的正弦公式可得sin错误!=sin αcos错误!+cos αsin错误!=错误!×错误!+错误!×错误!=—错误!.答案:A4.若错误!=错误!,则tan错误!=()A.—2B.2C.—错误!D.错误!解析:因为错误!=错误!,所以错误!=错误!,因为错误!=错误!=—tan错误!=错误!,所以tan错误!=—错误!.答案:C二、填空题5.已知cos错误!=错误!错误!,则cos α=________.解析:由于0<α—错误!<错误!,cos错误!=错误!,所以sin错误!=错误!.所以cos α=cos错误!=cos错误!cos错误!—sin错误!sin错误!=错误!×错误!—错误!×错误!=错误!.答案:错误!6.若tan α=3,则tan错误!=________.解析:因为tan α=3,所以tan错误!=错误!=错误!=—2.答案:—27.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.解析:∵sin α+cos β=1,cos α+sin β=0,∴sin2α+cos2β+2sin αcos β=11,cos2α+sin2β+2cos αsin β=0 2,12两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin αcos β+cos αsin β)=1,∴sin(α+β)=—错误!.答案:—错误!三、解答题8.求下列各式的值.(1)sin 347°cos 148°+sin 77°cos 58°;(2)错误!sin错误!+cos错误!;(3)tan 23°+tan 37°+错误!tan 23°tan 37°.解析:(1)原式=sin(360°—13°)·cos(180°—32°)+sin(90°—13°)cos(90°—32°)=sin 13°cos32°+cos 13°sin 32°=sin(13°+32°)=sin 45°=错误!.(2)原式=2错误!=2错误!=2sin错误!=2sin错误!=错误!.(3)∵tan 60°=错误!=错误!,∴tan 23°+tan 37°=错误!—错误!tan 23°tan 37°,∴tan 23°+tan 37°+错误!tan 23°tan 37°=错误!.9.已知△ABC,若sin(A+B)=错误!,cos B=—错误!,求cos A的值.解析:∵cos B=—错误!,∴错误!<B<π,错误!<A+B<π,∴sin B=错误!=错误!,cos(A+B)=—错误!=—错误!,∴cos A=cos[(A+B)—B]=cos(A+B)cos B+sin(A+B)sin B=错误!×错误!+错误!×错误!=错误!.[尖子生题库]10.已知tan α=错误!,sin β=错误!,且α,β为锐角,求α+2β的值.解析:∵tan α=错误!<1且α为锐角,∴0<α<错误!.又∵sin β=错误!<错误!=错误!且β为锐角.∴0<β<错误!,∴0<α+2β<错误!.1由sin β=错误!,β为锐角,得cos β=错误!,∴tan β=错误!.∴tan(α+β)=错误!=错误!=错误!.∴tan(α+2β)=错误!=错误!=1.2由12可得α+2β=错误!.。
最新课程标准:理解同角三角函数的基本关系式:sin2x+cos2x=1,错误!=tan x.知识点同角三角函数的基本关系式错误!(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用错误!=tan α可以实现角α的弦切互化.(2)关系式的逆用及变形用:1=sin2α+cos2α,sin2α=1—cos2α,cos2α=1—sin2α.[教材解难]同角三角函数的基本关系(1)同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下),关系式都成立,与角的表达形式无关,如:sin23α+cos23a=1.(2)sin2α是(sin α)2的简写,不能写成sin α2.(3)在使用同角三角函数关系式时要注意使式子有意义,如:式子tan 90°=错误!不成立.再如:sin2α+cos2β=1就不一定恒成立.[基础自测]1.若α为第二象限角,且sin α=错误!,则cos α=()A.—错误!B.错误!C.错误!D.—错误!解析:∵α是第二象限角,∴cos α=—错误!=—错误!.答案:A2.已知tan α=错误!,且α∈错误!,则sin α的值是()A.—错误!B.错误!C.错误!D.—错误!解析:∵α∈(π,错误!),∴sin α<0.由tan α=错误!=错误!,sin2α+cos2α=1,得sin α=—错误!.答案:A3.化简:(1+tan2α)·cos2α等于()A.—1B.0C.1D.2解析:原式=错误!·cos2α=cos2α+sin2α=1.答案:C4.已知tan α=—错误!,则错误!的值是________.解析:错误!=错误!=错误!=错误!.答案:错误!题型一利用同角基本关系式求值[经典例题]例1(1)已知sin α=错误!,求cos α,tan α;(2)已知tan α=3,求错误!.【解析】(1)因为sin α=错误!>0,且sin α≠1,所以α是第一或第二象限角.1当α为第一象限角时,cos α=错误!=错误!=错误!,tan α=错误!=错误!;2当α为第二象限角时,cos α=—错误!=—错误!,tan α=—错误!.(2)分子、分母同除以cos2α,得错误!=错误!.又tan α=3,所以错误!=错误!=错误!.错误!(1)已知角的正弦值或余弦值,求其他三角函数值,应先判断三角函数值的符号,然后根据平方关系求出该角的余弦值或正弦值,再利用商数关系求解该角的正切值即可.(2)利用同角基本关系式,分子、分母同除以cos2α,把正弦、余弦化成正切.方法归纳求同角三角函数值的一般步骤(1)根据已知三角函数值的符号,确定角所在的象限.(2)根据(1)中角所在象限确定是否对角所在的象限进行分类讨论.(3)利用两个基本公式求出其余三角函数值.跟踪训练1(1)本例(2)条件变为错误!=2,求错误!的值.(2)本例(2)条件不变,求4sin2α—3sin α·cos α—5cos2α的值.解析:(1)法一:由错误!=2,化简得sin α=3cos α,原式=错误!=错误!=错误!.法二:由错误!=2得tan α=3,原式=错误!=错误!=错误!.(2)原式=错误!=错误!=错误!=错误!.形如(2)式的求解,应灵活利用“1”的代换,将整式变为分式,即利用分式的性质将式子变为关于tanα的代数式,从而代入求值.题型二化简三角函数式[经典例题]例2化简:(1)错误!—错误!;(2)错误! .【解析】(1)错误!—错误!=错误!=错误!=错误!=—2tan2α.(2)错误!=错误!=错误!=1.(1)利用同角基本关系化简.(2)注意1的活用.例如1+2sin10 °cos10 °=sin210 °+cos210 °+2sin210 °cos10 °=(cos10 ° +sin10 ° )2方法归纳三角函数式的化简技巧(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的.(2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低次数,达到化简的目的.跟踪训练2(1)化简:错误!;(2)化简:sin2αtan α+2sin αcos α+错误!.解析:(1)原式=错误!=错误!=错误!=1.(2)原式=sin2α·错误!+2sin αcos α+cos2α·错误!=错误!=错误!=错误!.(1)1—sin2130 °=cos2130 °,1—2sin130 °cos130 °=(sin130 °—cos130 °)2.(2)式子中的tanα应化为错误!,如果出现分式,一般应通分.题型三利用同角三角函数关系证明[教材P183例7]例3求证错误!=错误!.【证明】证明1:由cos x≠0,知sin x≠—1,所以1+sin x≠0,于是左边=错误!=错误!=错误!=错误!=右边.所以,原式成立.证明2:因为(1—sin x)(1+sin x)=1—sin2x=cos2x=cos x cos x,且1—sin x≠0,cos x≠0,所以错误!=错误!.教材反思证明简单三角恒等式的思路(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.跟踪训练3求证:错误!=错误!.解析:证明:因为左边=错误!=错误!=错误!=错误!=右边,所以等式成立.左边是含正、余弦的式子,右边是含有正切的式子,因此需要弦化切,左边的分子可以用平方关系,分母可以用平方差公式实现变形.题型四sin α±cos α型求值[经典例题]sinα+cosα=13两边平方→求出2sinαcosα的值→求sinα—cosα的值例4已知sin α+cos α=错误!,其中0<α<π,求sin α—cos α的值.【解析】因为sin α+cos α=错误!,所以(sin α+cos α)2=错误!,可得:sin α·cos α=—错误!.因为0<α<π,且sin α·cos α<0,所以sin α>0,cos α<0.所以sin α—cos α>0,又(sin α—cos α)2=1—2sin αcos α=错误!,所以sin α—cos α=错误!.方法归纳已知sin α±cos α的求值问题的方法对于已知sin α±cos α的求值问题,一般利用整体代入的方法来解决,其具体的解法为:(1)用sin α表示cos α(或用cos α表示sin α),代入sin2α+cos2α=1,根据角α的终边所在的象限解二次方程得sin α的值(或cos α的值),再求其他,如tan α(体现方程思想).(2)利用sin α±cos α的平方及sin2α+cos2α=1,先求出sin αcos α的值,然后求出sin α∓cos α的值(要注意结合角的范围确定符号)从而求解sin α,cos α的值,再求其他.跟踪训练4已知x是第三象限角,且cos x—sin x=错误!.(1)求cos x+sin x的值;(2)求2sin2x—sin x cos x+cos2x的值.解析:(1)(cos x—sin x)2=1—2sin x cos x=错误!,所以2sin x cos x=错误!,所以(cos x+sin x)2=1+2sin x cos x=错误!,因为x是第三象限角,所以cos x+sin x<0,所以cos x+sin x=—错误!.(2)由错误!解得cos x=—错误!,sin x=—错误!,所以2sin2x—sin x cos x+cos2x=2×错误!—错误!+错误!=错误!.1.把cos x—sin x=错误!平方2.注意x的范围3.分别求出sin x、cos x课时作业30一、选择题1.已知α是第二象限角,且cos α=—错误!,则tan α的值是()A.错误!B.—错误!C.错误!D.—错误!解析:∵α为第二象限角,∴sin α=错误!=错误!=错误!,∴tan α=错误!=错误!=—错误!.答案:D2.已知cos α—sin α=—错误!,则sin αcos α的值为()A.错误!B.±错误!C.—错误!D.±错误!解析:由已知得(cos α—sin α)2=sin2α+cos2α—2sin αcos α=1—2sin αcos α=错误!,所以sin αcos α=错误!.答案:A3.化简错误!(1—cos α)的结果是()A.sin αB.cos αC.1+sin αD.1+cos α解析:错误!(1—cos α)=错误!(1—cos α)=错误!=错误!=sin α.答案:A4.已知|sin θ|=错误!,且错误!<θ<5π,则tan θ的值是()A.错误!B.—2错误!C.—错误!D.2错误!解析:因为错误!<θ<5π,所以θ为第二象限角,所以sin θ=错误!,所以cos θ=—错误!,所以tan θ=—错误!.答案:C二、填空题5.若sin θ=—错误!,tan θ>0,则cos θ=________.解析:由已知得θ是第三象限角,所以cos θ=—错误!=—错误!=—错误!.答案:—错误!6.已知sin αcos α=错误!,则sin α—cos α=________.解析:因为(sin α—cos α)2=1—2sin αcos α=1—2×错误!=0,所以sin α—cos α=0.答案:07.已知错误!=2,则sin αcos α的值为________.解析:由错误!=2,得错误!=2,∴tan α=3,∴sin αcos α=错误!=错误!=错误!.答案:错误!三、解答题8.已知tan α=3,求下列各式的值:(1)错误!;(2)错误!;(3)错误!sin2α+错误!cos2α.解析:(1)∵tan α=3,∴cos α≠0.原式的分子、分母同除以cos α,得原式=错误!=错误!=错误!.(2)原式的分子、分母同除以cos2α,得原式=错误!=错误!=—错误!.(3)原式=错误!=错误!=错误!=错误!.9.证明:错误!·错误!=1.解析:证明:错误!·错误!=错误!·错误!=错误!·错误!=错误!=错误!=1.[尖子生题库]10.已知—错误!<x<0,sin x+cos x=错误!,求下列各式的值.(1)sin x—cos x;(2)错误!.解析:(1)∵sin x+cos x=错误!,∴(sin x+cos x)2=错误!2,即1+2sin x cos x=错误!,∴2sin x cos x=—错误!.∵(sin x—cos x)2=sin2x—2sin x cos x+cos2x=1—2sin x cos x=1+错误!=错误!,又—错误!<x<0,∴sin x<0,cos x>0,∴sin x—cos x<0,∴sin x—cos x=—错误!.(2)由已知条件及(1),可知错误!,解得错误!,∴错误!=错误!=错误!.。
新教材人教A版高一数学必修一知识点与题型方法总结第五章三角函数【考纲要求】序号考点课标要求1角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。
了解2三角函数的概念和性质①借助单位圆理解三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值。
借助单位圆的对称性,利用定义推导出诱导公式(的正弦、余弦、正切)。
理解②借助图象理解正弦函数、余弦函数在上,正切函数在上的性质。
理解③结合具体实例,了解的实际意义,能借助图象理解的意义,了解参数的变化对函数图象的影响。
理解3同角三角函数的基本关系理解同角三角函数的基本关系:理解4三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦的意义理解②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
理解③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)掌握5三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型掌握5.1 任意角和弧度制知识点总结5.1 任意角和弧度制1.角的有关概念(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(2)角的表示:如图射线为始边,射线为终边,点为角的顶点,图中角可以记为“角”或“”,也可以简记为“”。
(3)角的分类提示:(1)角的概念的推广重在“旋转”,理解“旋转”二字应明确以下三个方面:①旋转的方向②旋转角的大小③射线未作任何旋转时的位置。
(2)角的范围不再限于2.终边相同的角:一般地,所有与角终边相同的角,连同角在内,可构成一个集合即任一与角终边相同的角,都可以表示成角与整数个周角的和。
3.角的单位制4.弧长公式及扇形面积公式5.常用角之间的换算6.象限角和轴线角(1)象限角:在平面直角坐标系内,使角的顶点与原点重合,角的始边与轴的非负半轴重合,那么角的终边在第几象限,我们就说这个角是第几象限角。
(2)轴线角:在平面直角坐标系内,使角的顶点与原点重合,角的始边与轴的非负半轴重合,如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限,这样的角叫做轴线角。
7.常用角的表示注:已知终边所在象限,如何求的终边所在象限(1)代数法①由的范围,求出的范围②通过分类讨论把写成的形式,然后判断的终边所在象限。
(2)几何法①画出区域:将坐标系每个象限等分,得个区域()②标号:自轴正向起,沿逆时针方向把每个区域依次标上如图所示(此时)③确定区域:找出与角终边所在象限标号一致的区域,即为所求。
考点突破【知识点一终边相同的角的表示】例1.在内与角终边相同的角是__________.答案变式训练例1已知角的顶点与原点重合,角的始边与轴的非负半轴重合,指出下列各角是第几象限角,以及范围内与其终边相同的角.(1) (2)(3) (4)答案(1)第二象限,在范围内,与角终边相同的角为;(2)第四象限,在范围内,与角终边相同的角为;(3)第一象限,在范围内,与角终边相同的角为;(4)第三象限,在范围内,与角终边相同的角为.【知识点一终边相同的角的表示】例2与角终边相同的角表示为__________.答案变式训练例2与角终边相同的角的集合是()A.B.C.D.【知识点二象限角的判断】例1角的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限变式训练例1已知:①,②,③,④,其中是第一象限角的为__________(填序号).答案②③④【知识点二象限角的判断】例2已知为锐角,则不可能在( )A.第一象限角B.第二象限角C.轴负半轴D.轴正半轴变式训练例2若是第四象限角,则是()A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角【知识点二象限角的判断】例3若是第二象限的角,试分别确定的终边所在位置.答案是第三或第四象限的角,或角的终边在轴的非正半轴上;是第一或第三象限的角;是第一或第二或第四象限的角.变式训练例3已知是第一象限角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【知识点三角度制与弧度制互化】例1.转化为弧度数为( )A.B.C.D.变式训练例1把下列各角度化成弧度:;;;.答案;;;.【知识点三角度制与弧度制互化】例2把弧度化成角度为()A.B.C.D.变式训练例2已知,则的终边在第__________象限,化为角度是__________. 答案二;【知识点四弧度制下角的有关概念】例1写出终边在第二、第三、第四象限的角的集合.答案略变式训练例1顶点为坐标原点,始边在轴的非负半轴上,终边在轴上的角的集合是( ) A.B.C.D.【知识点四弧度制下角的有关概念】例2.若,则的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限变式训练例2的终边位于第__________象限.答案二【知识点五弧长和扇形面积公式】例1已知扇形的圆心角为,面积为,求此扇形的周长.答案变式训练例1一个扇形的面积为,周长为,该扇形的半径__________,扇形的圆心角的弧度数__________.答案;【知识点五弧长和扇形面积公式】例2若扇形的半径为,所对圆心角为,扇形的周长为定值,则这个扇形的最大面积为__________.答案..变式训练例2(1)在面积为定值的扇形中,半径是多少时,扇形的周长最小?(2)在周长为定值的扇形中,半径是多少时,扇形的面积最大?答案(1);(2)5.2 三角函数的概念知识点总结1.三角函数的定义(1)单位圆的定义:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆为单位圆。
(2)三角函数的定义利用单位圆定义任意角的三角函数。
如图,设是一个任意角,它的终边与单位圆交于点。
①把点的纵坐标叫做的正弦函数,记作,即;②把点的横坐标叫做的余弦函数,记作,即;③把点的纵坐标与横坐标的比值叫做的正切,记作,即;可以看出,当时,的终边在轴上,这时点的横坐标等于,所以无意义。
所以,是以角为自变量,以单位圆上的点的纵坐标与横坐标的比值为函数值的函数,称为正切函数。
我们将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为:正弦函数余弦函数正切函数(3)三角函数定义的推广2.三角函数的定义域三角函数是用比值来定义的,所以定义域是使比值有意义的角的集合,正弦、余弦、正切函数的定义域如下表:3.三角函数值在各象限的符号记忆口诀:一全正,二正弦,三正切,四余弦注:终边相同的角的同一三角函数的值相等。
公式一4.同角三角函数的基本关系(1)平方关系:(2)商数关系:注:①在公式中,要求是同一个角,如不一定成立.②上面的关系式都是对使等号两边都有意义的那些角而言的。
如:基本三角函数关系式,对一切成立;仅在时成立.③同角三角函数的基本关系的应用极为广泛.它们还有如下等价变形:④在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“”的选取。
5.特殊角的三角函数值表题型方法【知识点一三角函数定义】例1已知角的终边过点,则下列各式中正确的有( )A.B.C.D.变式训练例1已知角的终边经过点,则__________,__________. 答案;【知识点一三角函数定义】例2.点是角终边上的一点,则()A.B.C.D变式训练例2已知角的终边过点,则的值是()A.B.C.D.【知识点一三角函数定义】例3已知角的终边与单位圆交于点,则__________,__________. 答案;变式训练例3已知的终边过点,若,则__________,__________. 答案;【知识点二三角函数值的象限符号】例1若为第一象限角,则,,中必定为正值的有( )A.个B.个C.个D.个变式训练例1的值( )A.小于B.大于C.等于D.不存在【知识点二三角函数值的象限符号】例2.若,则角是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角变式训练例2已知,那么角是第__________象限角.答案.三或四【知识点二三角函数值的象限符号】例3.函数的值域是()A.B.C.D.变式训练例3若是第三象限角,则( )A.B.C.D.【知识点三公式一的应用】例1.点在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限变式训练例1已知点,则在平面直角坐标系中位于( )A.第一象限B.第二象限C.第三象限D.第四象限【知识点四利用同角三角函数的基本关系求值】例1.已知,,则__________,__________. 答案.;变式训练例1若,且,则__________,__________.答案;【知识点四利用同角三角函数的基本关系求值】例2.已知,,且,则__________,__________. 答案;变式训练例2若,,则__________.答案或【知识点四利用同角三角函数的基本关系求值】例3.已知,计算:(1)的值;(2)的值.答案(1);(2).变式训练例3已知,求的值.答案.【知识点五利用同角三角函数的基本关系式化简】例1.化简:.答案.变式训练例1若,化简的值.答案【知识点六利用同角三角函数关系证明】例1.证明:(1);(2).变式训练例1求证:.【知识点六利用同角三角函数关系证明】例1.已知,且,求证:.变式训练例1已知,求证:.【知识点七同角三角函数基本关系与一元二次方程综合应用】例1.已知关于的方程的两根分别为,,.(1)求的值;(2)求的值;(3)求方程的两根及此时的值.答案(1);(2);(3)或.变式训练例1已知,是方程的两根.(1)求的值;(2)求+的值.答案(1);(2).5.3 诱导公式知识点总结1.三角形的诱导公式口诀:奇变偶不变,符号看象限。
意义:的三角函数值(1)当为偶数时,等于的同名三角函数值,前面加上一个把看作锐角时原三角函数值的符号。
(2)当为奇数时,等于的异名三角函数值,前面加上一个把看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限。
①奇变偶不变:其中奇偶是指的奇偶数倍,变与不变是指三角函数名称的变化,若变,则是正弦变余弦,余弦变正弦;②符号看象限:根据角的范围以及三角函数在四个象限的正负来判断新三角函数的符号。
记忆方法二:无论是多大的角,都将看成锐角。
2.诱导公式的应用(1)运用诱导公式转化三角函数的一般步骤:(2)诱导公式的作用①将任意角的三角函数值转化为锐角三角函数值,使用过程中的关键:一是符号问题,二是函数名称问题;②解题时要根据角的特征,选取适当的公式进行化简计算,对形如型的角,要注意对进行讨论;③由诱导公式可以看出,一个角对应一个三角函数值,而一个三角函数值对应多个角。