三角函数知识点归纳高一必修一
- 格式:docx
- 大小:37.40 KB
- 文档页数:5
三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。
高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( ) A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125 所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43, 故选:C3、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C .4、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23 答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 7、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57. 又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时,sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误. 8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、下列各式中,值为12的是( )A .cos 2π12−sin 2π12B .tan22.5∘1−tan 222.5∘C .2sin195°cos195°D .√1+cos π62答案:BC分析:运用二倍角公式,结合诱导公式和特殊角的三角函数值的求法即可得到答案. 选项A ,cos 2π12−sin 2π12=cos (2×π12)=cos π6=√32,错误; 选项B ,tan22.5°1−tan 222.5°=12⋅2tan22.5°1−tan 222.5°=12tan45°=12,正确;选项C ,2sin195∘cos195∘=sin390∘=sin (360∘+30∘)=sin30∘=12,正确;选项D ,√1+cos π62=√1+√322=√2+√32,错误.故选:BC.11、(多选)已知θ∈(0,π),sinθ+cosθ=15,则( )A .θ∈(π2,π)B .cosθ=−35 C .tanθ=−34D .sinθ−cosθ=75答案:ABD分析:已知式平方求得sinθcosθ,从而可确定θ的范围,然后求得sinθ−cosθ,再与已知结合求得sinθ,cosθ,由商数关系得tanθ,从而可判断各选项.因为sinθ+cosθ=15①,所以(sinθ+cosθ)2=sin 2θ+2sinθcosθ+cos 2θ=125,所以2sinθcosθ=−2425.又θ∈(0,π),所以sinθ>0,所以cosθ<0,即θ∈(π2,π),故A 正确.(sinθ−cosθ)2=1−2sinθcosθ=4925,所以sinθ−cosθ=75②,故D 正确.由①②,得sinθ=45,cosθ=−35,故B 正确.tanθ=sinθcosθ=−43,故C 错误. 故选:ABD . 填空题12、当θ∈(0,π2)时,若cos (5π6−θ)=−12,则sin (θ+π6)的值为_________.答案:√32##12√3 分析:先由已知条件求出sin (5π6−θ),然后利用诱导公式可求得结果. ∵θ∈(0,π2),∴5π6−θ∈(π3,5π6), ∴sin (5π6−θ)=√1−cos 2(5π6−θ)=√32, ∴sin (θ+π6)=sin [π−(5π6−θ)]=sin (5π6−θ)=√32. 所以答案是:√3213、已知sinα=2cosα,则sin 2α+2sinαcosα=______. 答案:85##1.6分析:根据题意,由同角三角函数关系可得tanα的值,而sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α,最后利用齐次式化成关于tanα的分式即可解.解:由sinα=2cosα,得tanα=sinαcosα=2, 则sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=22+2×222+1=85.所以答案是:85.14、已知f (x )=sin (ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω=______.答案:143分析:由题意可得函数的图象关于直线x=π4对称,再根据f(x)在区间(π6,π3)上有最小值,无最大值,可得π4ω+π3=2kπ+3π2(k∈Z),由此求得ω的值.依题意,当x=π6+π32=π4时,y有最小值,即sin(π4ω+π3)=−1,则π4ω+π3=2kπ+3π2(k∈Z),所以ω=8k+143(k∈Z).因为f(x)在区间(π6,π3)上有最小值,无最大值,所以π3−π4≤T2=πω,即ω≤12,令k=0,得ω=143.所以答案是:143解答题15、已知函数f(x)=2sinxcosx−2√3sin2x+√3.(1)求函数f(x)的最小正周期及其单调递增区间;(2)当x∈[−π6,π6],时,a−f(x)≤0恒成立,求a的最大值.答案:(1)最小正周期π,单调递增区间为[kπ−5π12,kπ+π12],k∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f(x)为f(x)=2sin(2x+π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x的范围可求2x+π3∈[0,2π3],进而可求f(x)的值域,故可求a的范围.(1)f(x)=2sinxcosx−2√3sin2x+√3=sin2x+√3cos2x=2sin(2x+π3)故函数f(x)的最小正周期T=2π2=π.由2kπ-π2≤2x+π3≤2kπ+π2得kπ−5π12≤x≤kπ+π12(k∈Z).∴函数f(x)的单调递增区间为[kπ−5π12,kπ+π12],k∈Z.(2)∵x∈[−π6,π6],∴2x+π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.。
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高一数学必修一 - 三角函数知识点总结1. 弧度制和角度制- 弧度制是以角度为单位,一个完整的圆的弧度为2π。
- 角度制是以角度为单位,一个完整的圆的角度为360°。
2. 三角函数的定义- 正弦函数(sin):对于一个角θ,其正弦值定义为对边与斜边的比值,即sinθ = 对边/斜边。
- 余弦函数(cos):对于一个角θ,其余弦值定义为邻边与斜边的比值,即cosθ = 邻边/斜边。
- 正切函数(tan):对于一个角θ,其正切值定义为对边与邻边的比值,即tanθ = 对边/邻边。
3. 基本三角函数性质- 正弦函数的取值范围为[-1, 1],且在周期为2π时有正负对称性。
- 余弦函数的取值范围为[-1, 1],且在周期为2π时有正负对称性。
- 正切函数的取值范围为(-∞, +∞),并且在π/2、3π/2、5π/2等处有正负无穷的间断点。
4. 三角函数的性质- 正弦函数和余弦函数是周期函数,其周期为2π。
- 正弦函数和余弦函数在0、π/6、π/4、π/3、π/2这些特殊角度处有确定的值,可以使用特殊角度的正弦值和余弦值表来查找。
5. 基本三角函数的关系- 正弦函数和余弦函数的关系为:sin^2θ + cos^2θ = 1。
- 正切函数与正弦函数和余弦函数的关系为:tanθ = sinθ / cosθ。
6. 三角函数的图像- 正弦函数的图像是一条上下周期变化的曲线。
- 余弦函数的图像是一条左右周期变化的曲线。
- 正切函数的图像是一条以x轴为渐进线的周期变化曲线。
7. 三角函数的应用- 三角函数在几何问题中有广泛的应用,例如求解三角形的边长和角度。
- 三角函数在物理问题中也有重要的应用,例如描述波动和振动等现象。
以上是高一数学必修一中三角函数的基本知识点总结。
希望对你有帮助!。
高中三角函数总结1.任意角的三角函数定义:设 为任意一个角,点 P( x, y) 是该角终边上的任意一点 (异于原点) , P(x, y) 到原点的距离为 rx 2 y 2 ,则:siny(正负看 y),cosx(正负看 x), tany(正负看 x y)rrx2.特别角三角函数值:0° 30° 45°60°90° sin0 12 3 122 2cos1 32 1 02 22tan13 13没心义33.同角三角函数公式:tansin , sin 2cos 21cossec1,csc 11cos,cottansin4.三角函数引诱公式:(1) sin( 2k ) sin , cos( 2k ) cos , tan( 2k ) tan ; (kZ )(2) sin( ) sin , cos( )cos , tan() tan ;(3) sin()sin , cos( )cos , tan()tan ;(函数名称不变,符号看象限)(4) sin() cos ,cos( )sin, tan() cot ;222(5) sin() cos , cos()sin , tan() cot ;222(正余互换,符号看象限)注意: tan 的值,总为 sin/cos ,便于记忆;5.三角函数两角引诱公式:(1)和差公式sin( ) sin coscos sin cos( ) cos cos sin sintantantan( )1 tan tan(2)倍角公式令上面的可得: sin( 2 ) 2 sin coscos(2 ) cos2 sin 22 tan 2 cos2 1 tan(2 )1 2sin 21 tan2 6.正弦定理:△ABC 中三边分别为a,b, c ,外接圆半径为R ,则有:a b cR sin A sin B27.余弦定理:sin C△ABC 中三边分别为a,b, c ,则有: cosC a2 b2 c22ab8.面积公式:1ab sinC(两边与夹角正弦值 ) △ABC 中三边分别为a,b, c ,面积为S,则有:S2三角函数图象:9.函数名图像单调区间y=sinx递加区间:[ 2k ,2k ]2 2递减区间:[ 2k ,2k 3], k Z2 2y=cosx递加区间:[ 2k,2k ]递减区间:[ 2k ,2k], k Zy=tanx递加区间:(k, k), k Z2 2定义域非R,为:{ x | x k}210.关于y Asin( x ) B 的性质:(1)最大值为| A | B ,最小值为| A | B ( sin( x )1时 ,得最大最小)(2)周期2 1 | |x ,初相是T ,频率 f ,相位是| | T 2(3)图像的对称轴是直线:(4)图像的对称中心为:x k (k Z ) ,可化简为x=的形式;2y A sin( x ) B B 时获取的所有交点(x,B )(5)单调区间求取:一利用引诱公式将变为正,如变为cos 等,此处假设0 ,二求出 y Asin x 的单调区间,令x分别位于单调区间地域,反解x 范围;11.图像变换:y Asin( x) B :y sin x沿x轴左移个单位y sin(x )横坐标x变为原来的1 倍xy sin( ) sin( x )1纵坐标 y变为原来的 A倍y ) y Asin( x )sin( xA沿y轴下移 B个单位y B Asin( x ) y Asin( x ) B 要点点:上 +下 -( y),左 +右 -( x),倍数相除(变为原来的n 倍,则对应的坐标都除以n)。
三角函数的概念及公式教学目标1、掌握同终边角的求法,熟悉象限角、轴线角,掌握角度与弧度的互化,会求弧长与扇形面积;2、掌握三角函数的概念,会求角的三角函数值;3、同角三角函数的基本关系;4、掌握诱导公式及应用。
重难点分析重点:1、角度、弧度的转化; 2、同角三角函数基本关系; 3、诱导公式。
难点:1、角度的表示;2、同角三角函数值的求解;3、诱导公式的变换。
知识点梳理1、角度概念:角可以看成是平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
2、角度分类:按逆时针方向旋转的角叫做正角;按顺时针方向旋转的角叫做负角;若一条射线没有任何旋转,我们称它形成了一个零角。
3、象限角:角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。
4、终边相同的角:所有与角α的终边相同的角,连同α在内,可构成一个集合=S ________________,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
5、把长度等于半径长的弧所对的圆心角叫做1弧度的角。
6、弧度制与角度制的换算关系式:π弧度=o180。
7、在弧度制下,弧长公式为R l ⋅=α,扇形面积公式为R l S ⋅=21。
(α为圆心角,R 为半径) 8、一般的,设角α终边上任意一点的坐标为),(y x ,它与原点的距离为r ,那么(1)r y叫做α的正弦,记作αsin ; (2)rx叫做α的余弦,记作αcos ;(3)xy叫做α的正切,记作αtan 。
9、同角三角函数关系的基本关系式(1)平方关系:1cos sin 22=+x x (2)商数关系:xxx cos sin tan =10、同角三角函数基本关系式的常用变形(1)α2sin =________________;α2cos =________________;(2)2)cos (sin αα+=________________;2)cos (sin αα-=________________;(3)ααcos sin ⋅=__________________=___________________。
1. 高一三角函数知识2.一1.1任意角和弧度制⎪⎩⎪⎨⎧零角负角:顺时针防线旋转正角:逆时针方向旋转任意角..12.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
3.. ①与α(0°≤α<360°)终边相同的角的集合:{}Z k k ∈+⨯=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=,90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角所对的弧长为l ,则其弧度数的绝对值|rl=α,其中r 是圆的半径。
5. 弧度与角度互换公式: 1rad =(π180)°≈57.30° 1°=180π注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222|ππαπα 锐角:⎭⎬⎫⎩⎨⎧<<20|παα ; 小于o90的角:⎭⎬⎫⎩⎨⎧<2|παα(包括负角和零角) 7. 弧长公式:||l R α= 扇形面积公式:211||22S lR R α==§1.2任意角的三角函数1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P2.. 三角函数线正弦线:MP; 余弦线:OM; 正切线:3.三角函数在各象限的符号:+ + - + - - - + sin α cos α tan α4. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。
(名师选题)部编版高中数学必修一第五章三角函数知识点归纳超级精简版单选题1、记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f(π2)=( )A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3, 又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2, 所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1.故选:A2、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2)答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围;解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4),因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D3、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( )A .π12B .π6C .π3D .5π12答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值.f(x)=sin2x +√3cos2x =2sin (2x +π3), 所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3), 由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z),解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12. 故选:A.4、函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<φ<π2)的部分图象如图所示,则下列叙述正确的是A .函数f(x)的图象可由y =Asinωx 的图象向左平移π6个单位得到B .函数f(x)的图象关于直线x =π3对称C .函数f(x)在区间[−π3,π3]上是单调递增的D .函数f(x)图象的对称中心为(kπ2−π12,0)(k ∈Z)答案:D 解析:根据题意求出解析式,利用正弦函数的对称性及单调性依次判断选项.由图象可知A =2,f (0)=1,∵f (0)=2sinφ=1,且0<φ<π2, ∴φ=π6,∴f(x)=2sin(ωx+π6),∵f(5π12)=0且为单调递减时的零点,∴ω⋅5π12+π6=π+2kπ,k∈Z,∴ω=2+24k5,k∈Z,由图象知T=2πω>2×5π12,∴ω<125,又∵ω>0,∴ω=2,∴f(x)=2sin(2x+π6),∵函数f(x)的图象可由y=A sinωx的图象向左平移π12个单位得,∴A错,令2x+π6=π2+kπ,k∈Z,对称轴为x=π6+kπ2,则B错,令2x+π6∈[−π2+kπ,π2+kπ],则x∈[−π3+kπ2,π6+kπ2],则C错,令2x+π6=kπ,k∈Z,则x=kπ2−π12,则D对,故选:D.小提示:本题考查三角函数图象及其性质,考查了正弦函数的对称性及单调性,属于中档题.5、阻尼器是一种以提供运动的阻力,从而达到减振效果的专业工程装置.深圳第一高楼平安金融中心的阻尼器减震装置,是亚洲最大的阻尼器,被称为“镇楼神器”.由物理学知识可知,某阻尼器模型的运动过程可近似为单摆运动,其离开平衡位置的位移s(cm)和时间t(s)的函数关系式为s=2sin(ωt+φ),其中ω>0,若该阻尼器模型在摆动过程中连续三次位移为s0(−2<s0<2)的时间分别为t1,t2,t3,且t3−t1=2,则ω=()A.π2B.πC.3π2D.2π答案:B分析:利用正弦型函数的性质画出函数图象,并确定连续三次位移为s0的时间t1,t2,t3,即可得T=t3−t1,可求参数ω.由正弦型函数的性质,函数示意图如下:所以T =t 3−t 1=2,则2πω=2,可得ω=π.故选:B6、将x 轴正半轴绕原点逆时针旋转30°,得到角α,则下列与α终边相同的角是( )A .330°B .−330°C .210°D .−210°答案:B分析:写出终边相同的角α的集合,进而选出正确答案.由题意得:{α|α=30°+k ⋅360°,k ∈Z },当k =−1时,α=−330°,B 正确,其他选项经过验证均不正确.故选:B7、若函数f (x )=sin (ωx −π3)(0<ω<40)的图象经过点(16,−1),则f (x )的最小正周期为()A .211B .29C .27D .25答案:A分析:f (16)=−1,据此求出ω的表达式,再根据ω的范围求得ω的值即可求最小正周期.依题意可得f (16)=−1,则ω6−π3=−π2+2k π(k ∈Z ),得ω=(12k −1)π(k ∈Z ).因为0<ω<40,所以ω=11π,T =2π|ω|=211.故选:A.8、函数f (x )=sinx+xcosx+x 2在[—π,π]的图像大致为A.B.C.D.答案:D分析:先判断函数的奇偶性,得f(x)是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.由f(−x)=sin(−x)+(−x)cos(−x)+(−x)2=−sinx−xcosx+x2=−f(x),得f(x)是奇函数,其图象关于原点对称.又f(π2)=1+π2(π2)2=4+2ππ2>1,f(π)=π−1+π2>0.故选D.小提示:本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.多选题9、已知tanθ=2,则下列结论正确的是()A.tan(π−θ)=−2B.tan(π+θ)=−2C.sinθ−3cosθ2sinθ+3cosθ=−17D.sin2θ=45答案:ACD分析:对于A,B利用诱导公式可求解;对于C,D利用齐次式化简可判断. 对于A选项,tan(π−θ)=−tanθ=−2,故A选项正确;对于B选项,tan(π+θ)=tanθ=2,故B选项错误;对于C选项,sinθ−3cosθ2sinθ+3cosθ=tanθ−32tanθ+3=2−34+3=−17,故C选项正确;对于D选项,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=44+1=45,故D选项正确.故选:ACD10、若α是第二象限的角,则下列各式中成立的是()A.tanα=−sinαcosαB.√1−2sinαcosα=sinα−cosαC.cosα=−√1−sin2αD.√1+2sinαcosα=sinα+cosαE.sinα=−√1−cos2α答案:BC解析:利用sin2α+cos2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A错;对B,C,D,E,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B,C正确;D,E错.故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力.11、下列各式中,值为12的是()A.cos2π12−sin2π12B.tan22.5∘1−tan222.5∘C.2sin195°cos195°D.√1+cos π62答案:BC分析:运用二倍角公式,结合诱导公式和特殊角的三角函数值的求法即可得到答案.选项A,cos2π12−sin2π12=cos(2×π12)=cosπ6=√32,错误;选项B,tan22.5°1−tan222.5°=12⋅2tan22.5°1−tan222.5°=12tan45°=12,正确;选项C,2sin195∘cos195∘=sin390∘=sin(360∘+30∘)=sin30∘=12,正确;选项D,√1+cos π62=√1+√322=√2+√32,错误.故选:BC. 填空题12、若P(cosθ,sinθ)与Q(cos(θ+π6),sin(θ+π6))关于y轴对称,写出一个符合题意的θ值______.答案:5π12(答案不唯一)分析:先由关于y轴对称得出关系式,再由诱导公式求解即可.由题意得,cosθ=−cos(θ+π6),sinθ=sin(θ+π6),由诱导公式cosθ=−cos(π−θ),sinθ=sin(π−θ)知,θ+θ+π6=π显然满足题意,解得θ=5π12.所以答案是:5π12(答案不唯一).13、已知函数f(x)=√3sin2x−2cos2x+1,且方程f(x)−a=0在[−π3,π6]内有实数根,则实数a的取值范围是___________.答案:[−2,1]分析:由题意可得a=f(x)在[−π3,π6]内有实数根,a的取值范围即为函数f(x)的值域.f(x)=√3sin2x−2cos2x+1=√3sin2x−cos2x=2sin(2x−π6),方程f(x)−a=0在[−π3,π6]内有实数根,即a=f(x)在[−π3,π6]内有实数根,x∈[−π3,π6],2x−π6∈[−5π6,π6],得−2≤f(x)≤1,即a的取值范围是[−2,1],所以答案是:[−2,1]。
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
⾼⼀数学三⾓函数知识整理⾼⼀数学三⾓函数知识整理⼀、正弦函数图像函数y=sin x 的定义域,值域,奇偶性,单调性,周期性 1、函数y=sin x 的定义域是R ,值域为[-1,1] 2、当x ∈{x| x=22 k ππ+,k ∈Z}时,y 有最⼤值为1,当x ∈{x|x=322k ππ+,k ∈Z}时,y 有最⼩值为-13、函数y=sin x 的图像关于原点对称是奇函数,可以根据sin(-x)=-sinx 证明。
对称中⼼为(k π,0)对称轴为x=k π+2π(k ∈Z)。
4、在[22k ππ-,22k ππ+]k ∈Z 上单调递增,在[22k ππ+,322k ππ+]k∈Z 上单调递减。
5、函数y=sin x 的周期为2k π(k ∈Z 且k ≠0),最⼩正周期为2π注意有界性:sin 1x ≤ ⼆、余弦函数图像函数y=cosx 的定义域,值域,奇偶性,单调性,周期性 1、函数y=cos x 的定义域是实数集R ,值域是[-1,1]2、当x ∈{x | x=2k π,k ∈Z}时y 有最⼤值为1,当x ∈{x | x=2k π+π,k∈Z}时,y 有最⼩值为-1。
3、函数y=cosx 关于y 轴对称是偶函数,可以通过诱导公式cos(-x)=cosx 证明。
对称中⼼[2k ππ+,0],对称轴为x= k π4、在[2k ππ-,2k π]上单调递增,在[2k π,2k ππ+]上单调递减。
5、函数y=cosx 的周期为2k π(k ∈Z 且k ≠0)最⼩正周期为2π。
注意有界性:cos 1x ≤ 三、正切函数图像函数y=tanx 定义域,值域,奇偶性,单调性,周期性1、 y=tan x 的定义域是{x| x ∈R 且x ≠2k ππ+,k ∈Z}。
因为定义域不连贯,所以当有题⽬说该函数在定义域上怎么怎么样是错误的(同样⽤于其它所有函数)。
值域是⼀切实数R2、 y=tan x 的定义域关于原点对称是奇函数,根据诱导公式且tan(-x)=-tan x 可以证明。
高中数学必修一三角函数概念知识点总结及练习题一、正弦函数与余弦函数1. 什么是正弦函数?正弦函数是指以单位圆为基础,对应于某个角的正弦值与其对边的比例。
2. 什么是余弦函数?余弦函数是指以单位圆为基础,对应于某个角的余弦值与其邻边的比例。
3. 正弦函数和余弦函数之间有什么关系?正弦函数和余弦函数是相互关联的,它们的图像相互对称,即正弦函数的图像沿y轴对称于余弦函数的图像。
二、三角函数的性质1. 三角函数的周期性是什么意思?三角函数的周期性指的是三角函数在一定范围内的值呈现出重复的规律。
2. 三角函数的奇偶性是什么意思?三角函数的奇偶性指的是在关于原点对称的图像中,函数值的变化规律。
3. 三角函数的单调性是什么意思?三角函数的单调性指的是在一定范围内,函数值的增减规律。
三、三角函数的图像1. 正弦函数的图像特点是什么?正弦函数的图像是一条连续的曲线,它在[-π/2, π/2]范围内在y 轴的正半轴上递增,在[π/2, 3π/2]范围内在y轴的负半轴上递减。
2. 余弦函数的图像特点是什么?余弦函数的图像是一条连续的曲线,它在[0, π]范围内在y轴的正半轴上递减,在[π, 2π]范围内在y轴的负半轴上递增。
四、三角函数的性质应用练题1. 求下列各式中所给的角度的正弦值:a) sin(30°)b) sin(60°)c) sin(45°)d) sin(90°)2. 求下列各式中所给的角度的余弦值:a) cos(0°)b) cos(180°)c) cos(270°)d) cos(360°)3. 判断下列各式是正弦函数还是余弦函数:a) f(x) = sin(x)b) f(x) = cos(x)4. 比较下列各式的大小:a) sin(30°) 与 cos(60°)b) sin(45°) 与 cos(45°)五、解答1. 求下列各式中所给的角度的正弦值:a) sin(30°) = 0.5b) sin(60°) = √3/2c) sin(45°) = √2/2d) sin(90°) = 12. 求下列各式中所给的角度的余弦值:a) cos(0°) = 1b) cos(180°) = -1c) cos(270°) = 0d) cos(360°) = 13. 判断下列各式是正弦函数还是余弦函数:a) f(x) = sin(x)(正弦函数)b) f(x) = cos(x)(余弦函数)4. 比较下列各式的大小:a) sin(30°) 与 cos(60°)(sin(30°) < cos(60°))b) sin(45°) 与 cos(45°)(sin(45°) = cos(45°))。
三角函数知识点总结一、角的概念和弧度制:(1)①正角(逆时针旋转而成)和负角(顺时针旋转而成);②在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说这个角是第几象限的角。
若角的终边在坐标轴上,则这个角不属于任何象限,叫轴线角。
(2)终边相同的角:所有与角α终边相同的角,连同角α在内,都可表示为},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或;(3)①象限角:第一象限角集合为⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222ππαπα 第二象限角集合为 ⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,222ππαππα第三象限角集合为 ⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,2322ππαππα第四象限角集合为 ⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,22232ππαππα②轴线角: {}Z k k ∈=,2|παα③终边在一、三象限的平分线上角的集合:},4|{Z k k ∈+=ππββ;终边在二、四象限的平分线上角的集合:},43|{Z k k ∈+=ππββ;④注意比较: o o 90~0间的角, 第一象限的角, 锐角, 小于o90的角(4)角的度量与弧度: π=0180,rad 180π=1,3.57=rad 1,π2=360000;(5)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α(l 为圆心角α所对圆弧的长,r 为圆的半径). (6)弧长公式:r l ||α=;半径公式:||αl r =;扇形面积公式:lr S 21=;二、任意角的三角函数:(1)定义:以任意角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,记22y x r OP +==,则xyr x r y ===αααtan ,cos ,sin ;(注意r>0) (2)定号图:- - - + + - αsin αcos αtan+ + - + - +三、同角基本关系式与诱导公式:1、同角三角函数的基本关系:,tan cos sin ,1cos sin 22ααααα==+ 注意:①主要作用:知一求二.②巧用勾股数(3,4,5);(6,8,10);(5,12,13);(8,15,17);③主要题型: 弦切互化; ααααcos sin 21)cos (sin 2±=±. 2、诱导公式:公式一~九(1) 2K π±α,-α,π±α的三角函数 函数名不变,符号看象限 α的三角函数(2)2π±α,23π±α的三角函数 函数名改变,符号看象限 α的三角函数(3)统一形式:ααπ与)∈("2"Z k k ±的三角函数间的关系可概括为“奇变偶不变,符号看象限”.其中“奇、偶”是指k 的奇偶性,符号是把α看作锐角时,)∈(2Z k k απ±所在象限原名函数值的符号;变是指原名正弦变为余弦,原名余弦变为正弦.主要作用:化任意角的三角函数为锐角三角函数,从而求值. 步骤:四、三角函数图像和性质1.周期函数定义定义:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫任意负角的 三角函数 公式二、 四、五、 六、七、 八、九做这个函数的周期.2.正弦函数、余弦函数、正切函数的图像()类比于研究x y sin =的性质,只需将)sin(ϕω+=x A y 中的ϕω+x 看成x y sin =中的x (整体换元),但在求)sin(ϕω+=x A y 的单调区间时,要特别注意A 和ω的符号,通过诱导公式先将ω化为正数.研究函数)cos(ϕω+=x A y 、)tan(ϕω+=x A y 的性质的方法与其类似,也是类比、转化.3、图像的变换函数y =A sin(ωx +φ)+k (A .>.0, ..ω>..0, ..φ≠.0.).的图象可由函数y =sin x 的图象作如下变换而得:A.B. C.D.(1)相位变换(按φ横向平移变换):φ>0,左移;φ<0,右移.|φ|个单位长度. (2)周期变换(按ω横向伸缩变换):ω>1,缩短;ω<1,伸长.为原来的ω1倍. (3)振幅变换(按A 纵向伸缩变换): A >1,伸长;A <1,缩短.为原来的A 倍. (4)上下平移(按k 纵向平移变换): k >0, 上移;k <0,下移.| k |个单位长度针对练习:1.角α的终边上一点)3,(a a -,则=+ααsin 2cos2.已知α=π65,则点P(cos α,sin α)在第 象限。
三角函数高一必修一知识点一、角度与弧度的转换在三角函数中,我们常用角度或弧度来表示角的大小。
角度是最常见的度量方式,它以度为单位,记作°。
而弧度则是一种用长度来度量角的大小的方式,记作rad。
对于任意角θ,它的度数与弧度数之间的转换关系可以表示为:弧度 = 角度× π/180度数 = 弧度× 180/π这意味着每个角度对应的弧度数是固定的,而每个弧度对应的角度数也是固定的。
二、正弦、余弦、正切函数的定义及性质1. 正弦函数 (sine function):正弦函数是三角函数中最基本的函数之一,它以sin表示。
对于任意角θ,它的正弦值可以定义为:sinθ = 对边/斜边正弦函数的周期是360°或2π弧度,且在每个周期内具有相同的图像。
2. 余弦函数 (cosine function):余弦函数是另一个重要的三角函数,它以cos表示。
对于任意角θ,它的余弦值可以定义为:cosθ = 邻边/斜边余弦函数的周期也是360°或2π弧度,与正弦函数的周期相同。
3. 正切函数 (tangent function):正切函数是三角函数中的另一个常见函数,它以tan表示。
对于任意角θ,它的正切值可以定义为:tanθ = 对边/邻边正切函数的周期是180°或π弧度。
三、三角函数的基本关系1. 三角函数之间的基本关系:sinθ = 1/cscθ,cosθ = 1/secθ,tanθ = 1/cotθ这些关系被称为三角函数的倒数关系,它们描述了三角函数之间的互相依赖关系。
2. 三角函数的同角性质:在一个三角函数公式中,如果角度相同,则对应的三角函数值相等。
例如,对于任意角θ:sin(π/2 - θ) = cosθ这被称为三角函数的同角性质,它可以用来简化三角函数的计算。
四、特殊角的三角函数值在学习三角函数时,掌握常用特殊角的三角函数值是非常重要的。
以下是一些常见特殊角的三角函数值:特殊角:0° 30° 45° 60° 90°正弦值:0 1/2 √2/2 √3/2 1余弦值:1 √3/2 √2/2 1/2 0正切值:0 1/√3 1 √3 不存在这些特殊角的三角函数值可以通过定义和几何关系进行求解。
高一数学必修一中的三角函数知识点是高中数学学习的基础,也是考试中经常考查的重点内容。
下面就介绍一下三角函数的相关知识点。
一、正弦、余弦、正切的定义。
正弦函数和余弦函数分别是把一个角的弧度分解成其正弦和余弦,其定义分别为:角度θ对应的正弦值为sinθ,余弦值为cosθ;正切函数则是把一个角度θ分解成它的正切值,其定义为:角度θ对应的正切值为tanθ。
二、三角函数的基本关系。
三角函数之间有若干基本关系,例如:sin2θ+cos2θ=1,sinθ/cosθ=tanθ,cotθ=1/tanθ等,并且还有各种变形关系,例如,sin2θ=2sinxcosx,cos2θ=cos2x-sin2x等,都是必须掌握的。
三、求反三角函数的方法。
求反三角函数是指求出正弦函数、余弦函数和正切函数的倒数函数,也就是求出θ的值。
要求反三角函数,可以采用两种方法:一是根据定义求解,即把函数式代入公式,求出θ;二是使用三角函数表,根据三角函数表查找对应的值。
四、求解三角形的边长和角度。
三角函数还可以用来求解三角形的边长和角度,例如求已知两边长及其夹角求第三边的长度,可以利用余弦定理:a^2=b^2+c^2-2bc·cosA;求已知两边长及其夹角求第三个角度,可以利用余弦定理:cosA=(a^2-b^2-c^2)/2bc,两种情况都要用到三角函数。
五、三角函数的图形。
三角函数的图形可以用极坐标系和直角坐标系表示,极坐标系可以用点(r,θ)表示,其中r是极坐标系中的点到原点的距离,θ是极坐标系中的点到横轴的夹角;直角坐标系也可以用点(x,y)表示,其中x是点在x轴的横坐标,y是点在y轴的纵坐标。
以上就是高一数学必修一中三角函数的基本知识点,希望以上介绍能够帮助大家更好的学习和理解三角函数的相关知识点,掌握它们的应用,取得好的成绩。
§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点Pxy =αtan ;(x,y )P 与原点的距离为r ,则 ry =αsin ; =αcos yx=αcot ; x r =αsec ;. y r =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增). ②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).y=|cos2x +1/2|图象3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
高一数学三角函数公式的详尽归纳三角函数是高中数学中的重要组成部分,掌握三角函数的公式对于解决相关问题至关重要。
本文将对高一数学中涉及的三角函数公式进行详尽的归纳与整理。
1. 基本三角函数定义1.1 正弦函数(sin)正弦函数定义为直角三角形中对边与斜边的比值,即:\[ \sin(\theta) = \frac{\text{对边}}{\text{斜边}} \]1.2 余弦函数(cos)余弦函数定义为直角三角形中邻边与斜边的比值,即:\[ \cos(\theta) = \frac{\text{邻边}}{\text{斜边}} \]1.3 正切函数(tan)正切函数定义为直角三角形中对边与邻边的比值,即:\[ \tan(\theta) = \frac{\text{对边}}{\text{邻边}} \]2. 三角函数的周期性2.1 周期性公式三角函数的周期性可以通过以下公式表示:\[ \sin(x + 2k\pi) = \sin(x) \]\[ \cos(x + 2k\pi) = \cos(x) \]\[ \tan(x + \pi) = \tan(x) \]其中,\( k \) 是任意整数。
3. 三角函数的倍角公式3.1 正弦函数的倍角公式\[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \]3.2 余弦函数的倍角公式\[ \cos(2\theta) = 2\cos^2(\theta) - 1 \]\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]3.3 正切函数的倍角公式\[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \]4. 三角函数的和差公式4.1 正弦函数的和差公式\[ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm\cos(\alpha)\sin(\beta) \]4.2 余弦函数的和差公式\[ \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp\sin(\alpha)\sin(\beta) \]4.3 正切函数的和差公式\[ \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} \]5. 三角函数的半角公式5.1 正弦函数的半角公式\[ \sin(\theta/2) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} \]5.2 余弦函数的半角公式\[ \cos(\theta/2) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} \]5.3 正切函数的半角公式\[ \tan(\theta/2) = \frac{\sin(\theta)}{1 + \cos(\theta)} \]6. 三角恒等式6.1 和差化积公式\[ \sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha +\beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha +\beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \]6.2 积化和差公式\[ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) \]\[ \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) = \cos(\alpha - \beta) \]7. 三角函数的图像与性质7.1 正弦函数的图像与性质正弦函数的图像为周期波动曲线,最大值为1,最小值为-1。
全国通用2023高中数学必修一第五章三角函数知识点总结(超全)单选题1、已知sinθ=45,则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=( )A .−169B .169C .−43D .43答案:B分析:由诱导公式和同角关系sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)可化为sin 2θcos 2θ,再由同角关系由sinθ求出cos 2θ,由此可得结果.∵ sinθ=45,∴ cos 2θ=1−sin 2θ=925 则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=sinθ(−sinθ)(−cosθ)cosθ=sin 2θcos 2θ=169,故选:B.2、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B3、若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( ) A .√1515B .√55C .√53D .√153答案:A分析:由二倍角公式可得tan2α=sin2αcos2α=2sinαcosα1−2sin 2α,再结合已知可求得sinα=14,利用同角三角函数的基本关系即可求解.∵tan2α=cosα2−sinα∴tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,∴2sinα1−2sin 2α=12−sinα,解得sinα=14,∴cosα=√1−sin 2α=√154,∴tanα=sinαcosα=√1515. 故选:A.小提示:关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sinα.4、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( )A .π12B .π6C .π3D .2π3答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3), ∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0,∴当k =1时,m 取得最小值2π3. 故选:D.5、海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深值(单位:m )记录表已知港口的水的深度随时间变化符合函数f(x)=Asin(ωx +φ)+B ,现有一条货船的吃水深度(船底与水面的距离)为4m ,安全条例规定至少要有2m 的安全间隙(船底与海底的距离),该船计划在中午12点之后按规定驶入港口,并开始卸货,卸货时,其吃水深度以每小时0.25m的速度减小,4小时卸完,则其在港口最多能停放()A.4小时B.5小时C.6小时D.7小时答案:B分析:由已知表格中数据求得f(x)=2sinπ6x+5,根据驶入港口f(x)大于等于6,离开时f(x)大于等于5,分析即可得答案.由表格中的数据可知,f(x)max=7,f(x)min=3,则A=f(x)max−f(x)min2=7−32=2,B=f(x)max+f(x)min2=7+32=5.由T=12,∴ω=2πT =π6,故f(x)=2sin(π6x+φ)+5,当x=3时,f(x)=7,则2sin(π6x+φ)+5=7∴2cosφ=2,即cosφ=1,得φ=0.∴f(x)=2sinπ6x+5.由f(x)=2sinπ6x+5=6,得sinπ6x=12,即π6x=π6+2kπ,k∈Z或π6x=5π6+2kπ,k∈Z∴x=12k+1,k∈Z或x=12k+5,k∈Z.又该船计划在中午12点之后按规定驶入港口,∴k=1时,x=13,即该船应在13点入港并开始卸货,卸货时,其吃水深度以每小时0.25m的速度减小,4小时卸完,卸完后的吃水深度为4−0.25×4=3,所以该货船需要的安全水深为3+2=5米,由f(x)=2sinπ6x+5=5,得sinπ6x=0,即π6x=0+2kπ,k∈Z或π6x=π+2kπ,k∈Z∴x=12k,k∈Z或x=12k+6,k∈Z.所以可以停留到18点,此时水深为5米,货船需要离港,则其在港口最多能停放5小时.故选:B6、将函数f(x)=2cosx的图象先向右平移φ(0<φ<π)个单位长度,再把所得函数图象的横坐标变为原来的1ω(ω>0)倍,纵坐标不变,得到函数g(x)的图象,若对g(x)满足|g(x1)−g(x2)|=4,有|x1−x2|min=π4恒成立,且g(x)在区间(π6,π3)上单调递减,则φ的取值范围是()A.[π12,π3]B.[π3,π2]C.(π3,2π3]D.[π3,2π3]答案:D分析:可得g(x)=2cos(ωx−φ),根据题意可求出最小正周期,得出ω,求出g(x)的单调递减区间,根据包含关系可求出.由题可得g(x)=2cos(ωx−φ),若满足|g(x1)−g(x2)|=4,则x1和x2必然一个极大值点,一个极小值点,又|x1−x2|min=π4,则T2=π4,即T=π2,所以ω=2πT=4,令2kπ≤4x−φ≤2kπ+π,可得kπ2+φ4≤x≤kπ2+π4+φ4,即g(x)的单调递减区间为[kπ2+φ4,kπ2+π4+φ4],k∈Z,因为g(x)在区间(π6,π3)上单调递减,所以(π6,π3)⊆[kπ2+φ4,kπ2+π4+φ4],k∈Z,则{kπ2+φ4≤π6kπ2+φ4+π4≥π3,解得−2kπ+π3≤φ≤−2kπ+2π3,k∈Z,因为0<φ<π,所以可得π3≤φ≤2π3.故选:D.7、函数f(x)=2sin(ωx+φ)(ω>0)图像上一点P(s,t)(−2<t<2)向右平移2π个单位,得到的点Q也在f(x)图像上,线段PQ与函数f(x)的图像有5个交点,且满足f(π4−x)=f(x),f(−π2)>f(0),若y=f(x),x∈[0,π2]与y=a有两个交点,则a的取值范围为()A.(−2,−√2]B.[−2,−√2]C.[√2,2)D.[√2,2]答案:A分析:首先根据已知条件分析出|PQ|=2π=2T,可得ω=2,再由f(π4−x)=f(x)可得y=f(x)对称轴为x=π8,利用f(−π2)>f(0)可以求出符合题意的一个φ的值,进而得出f(x)的解析式,再由数形结合的方法求a的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y=f(x),x∈[0,π2]与y=a有两个交点,则a的取值范围为(−2,−√2],故选:A小提示:关键点点睛:本题解题的关键是取特殊点P(0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f(x)的解析式,再利用数形结合的思想求解a的取值范围.8、已知简谐振动f(x)=Asin(ωx+φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是()A .16,π6B .18,π3C .18,π6D .16,π3答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解.由题意可知,A =32,32+(T2)2=52,则T =8,ω=2π8=π4,∴ y =32sin (π4x +φ).由32sin φ=34,得sin φ=12.∵|φ|<π2,∴φ=π6.因此频率是18,初相为π6.故选:C9、下列函数中为周期是π的偶函数是( ) A .y =|sinx |B .y =sin|x| C .y =−sinx D .y =sinx +1 答案:A分析:根据偶函数定义可判断选项,由三角函数的图像与性质可得周期,即可得解. 对于A ,y =|sinx |为偶函数,且最小正周期为π,所以A 正确; 对于B ,y =sin |x |为偶函数,但不具有周期性,所以B 错误; 对于C ,y =−sinx 为奇函数,所以C 错误; 对于D, y =sinx +1为非奇非偶函数,所以D 错误. 综上可知,正确的为A 故选:A10、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( )A.向左平移π4个单位B.向右平移π4个单位C.向左平移π2个单位D.向右平移π2个单位答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin(2x+π3+π2)=cos(2x+π3)所以sin(2x+π3)→sin(2x+π2+π3),只需将f(x)的图象向左平移π4个单位,故选:A. 填空题11、若角α的终边落在直线y=-x上,则√1−sin2α√1−cos2αcosα的值等于________.答案:0解析:先求出α=2kπ+34π或2kπ+74π,k∈Z,再分类讨论得解.因为角α的终边落在直线y=-x上,所以α=2kπ+34π或2kπ+74π,k∈Z,当α=2kπ+34π,k∈Z,即角α的终边在第二象限时,sinα>0,cosα<0;所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinα−cosα+sinαcosα=0当α=2kπ+74π,k∈Z,即角α的终边在第四象限时,sinα<0,cosα>0.所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinαcosα+−sinαcosα=0综合得√1−sin2α+√1−cos2αcosα的值等于0.所以答案是:012、已知tanα=√2,则cos4α−cos2α+sin2α=__________.答案:49解析:将cos4α−cos2α+sin2α化简为sin2α(1−sin2α)=sin4α,然后将式子写成sin4α(sin2α+cos2α)2再转化为含tanα的式子,可求出答案.cos4α−cos2α+sin2α=cos2α(cos2α−1)+sin2α=−cos2αsin2α+sin2α=sin2α(1−sin2α)=sin4α=sin4α(sin2α+cos2α)2=tan4α(1+tan2α)2=4(2+1)2=49所以答案是:49.小提示:关键点睛:本题考查三角函数的给值求值问题,解答本题的关键是先将所求化简为sin4α,再变形为sin4α(sin2α+cos2α)2,从而转化为tan4α(1+tan2α)2,属于中档题.13、若cosθ=725,θ∈(0,π),则sin(π2+θ2)=__________答案:45分析:首先利用二倍角公式求出cosθ2,再利用诱导公式计算可得;解:因为cosθ=725=2cos2θ2−1,所以2cos2θ2=3225,则cos2θ2=1625.因为θ∈(0,π),所以θ2∈(0,π2),即cosθ2>0,故cosθ2=45.所以sin(π2+θ2)=cosθ2=45.所以答案是:45.解答题14、如图,在平面直角坐标系中,锐角α和钝角β的顶点与原点重合,始边与x轴的正半轴重合,终边分别与单位圆交于A,B两点,且OA⊥OB.(1)求sin(π+α)cos(π2+β)cos(π−β)sin(3π2+α)的值;(2)若点A的横坐标为35,求2sinαcosβ的值. 答案:(1)−1(2)−3225分析:(1)由诱导公式化简可得; (2)由定义可得cosα=35,即可求出.(1)∵β=π2+α,∴sinβ=sin (π2+α)=cosα,cosβ=cos (π2+α)=−sinα, ∴sin (π+α)cos(π2+β)cos (π−β)sin(3π2+α)=sinαsinβcosαcosβ=−sinαcosαsinαcosα=−1.(2)∵点A 的横坐标为35,∴cosα=35,sinα=45, cosβ=cos (π2+α)=−sinα=−45, ∴2sinαcosβ=2×45×(−45)=−3225. 15、化简下列各式:(1)√1−2cos5°sin5°cos5°−√1−cos 25°;(2)(1sinα+1tanα)(1−cosα). 答案:(1)1;(2)sinα.分析:(1)根据同角三角函数关系,化简计算,即可得答案. (2)见切化弦,根据同角三角函数关系,化简计算,即可得答案. (1)原式=√(cos5°−sin5°)2cos5°−√sin 25°=cos5°−sin5°cos5°−sin5°=1;(2)原式=(1sinα+cosαsinα)(1−cosα) =1+cosαsinα(1−cosα)=sin 2αsinα=sinα.。
高一必修一三角函数知识点总结两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)。
三角函数知识点归纳高一必修一三角函数知识点归纳
一、定义与基本性质
三角函数是以角的度量为自变量,输出正弦、余弦、正切等数值的函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)。
1. 正弦函数(sin):
- 定义:在单位圆上,点P在坐标系中的纵坐标与原点O连线与x轴的夹角为θ时,P点的纵坐标就是正弦值(sinθ)。
- 性质:正弦函数是一个奇函数,其定义域为实数集合R,值域为[-1, 1]。
2. 余弦函数(cos):
- 定义:在单位圆上,点P在坐标系中的横坐标与原点O连线与x轴的夹角为θ时,P点的横坐标就是余弦值(cosθ)。
- 性质:余弦函数是一个偶函数,其定义域为实数集合R,值域为[-1, 1]。
3. 正切函数(tan):
- 定义:正切函数定义为:tanθ = sinθ / cosθ。
- 性质:正切函数是一个奇函数,其定义域为实数集合R减去{x | x = (2k + 1)π / 2, k为整数},值域为实数集合R。
二、基本关系式
1. 三角函数的平方关系:
- sin²θ + cos²θ = 1
- 1 + tan²θ = sec²θ
- 1 + cot²θ = cosec²θ
2. 值域关系:
- -1 ≤ sinθ ≤ 1
- -1 ≤ cosθ ≤ 1
- tanθ的值域为全体实数
三、三角函数的周期性
1. 正弦函数和余弦函数的周期:
- sin(θ + 2π) = sinθ,周期为2π
- cos(θ + 2π) = cosθ,周期为2π
2. 正切函数的周期:
- tan(θ + π) = tanθ,周期为π
四、三角函数的图像与性质
1. 正弦函数的图像:
- 值域为[-1, 1]的连续曲线,以直线y = 0为中心对称。
- 最小正周期为2π。
- 从图像上看,正弦函数是一个周期性的波状曲线。
2. 余弦函数的图像:
- 值域为[-1, 1]的连续曲线,以直线y = 1和y = -1为对称轴。
- 最小正周期为2π。
- 从图像上看,余弦函数是一个周期性的波状曲线,相较于正弦函数向右平移了π/2的距离。
3. 正切函数的图像:
- 以直线x = π/2为渐近线,值域为全体实数。
- 最小正周期为π。
- 从图像上看,正切函数是一个周期性的波状曲线,并在每个周期内以直线x = π/2为对称轴。
五、三角函数的应用
三角函数在实际问题中有广泛的应用,例如:
1. 测量与导航:通过三角函数的计算,可以确定角度、距离和高度,用于测量、导航和地图制作等领域。
2. 信号处理:三角函数的波状特性使其在信号处理中起到重要作用,例如在音频、图像和视频等领域中的信号分析与处理。
3. 物理学:应用三角函数可以描述物体的周期性运动,例如振动和波动现象的分析。
4. 工程学:在建筑、电子、通信等工程领域中,三角函数的运用广泛,如电路分析、信号传输和结构设计等。
综上所述,三角函数是高中数学中重要的内容,掌握三角函数的定义、基本关系式、周期性、图像和应用等知识点对于学习和应用数学都具有重要意义。
通过深入了解和实际运用,可以更好地理解三角函数的特性和作用,提升数学应用能力。