初一三角形
- 格式:doc
- 大小:1.23 MB
- 文档页数:2
初一数学三角形知识点详解1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.快速判定方法:1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。
2)等腰三角形:两腰之和大于底,就能组成三角形。
3)等边三角形:肯定能组成。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的画法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9. 三角形内角和定理:三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角和;推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。
10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
一、基础选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为() A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是()A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为()A.0 B.1 C.2 D.34.下面说法错误的是()A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是()A.中线 B.角平分线C.高线 D.三角形的角平分线6.如图5-12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1 B.∠2 C.∠B D.∠1、∠2和∠B7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是() A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么() A.M>0 B.M=0 C.M<0 D.不能确定二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC中,AB=6,AC=10,那么BC边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.4.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.7.在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5-13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.9.如图5-14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D=_____.10.如图5-15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、拓展选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0)B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.610.三角形所有外角的和是()A.180°B.360°C.720°D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A.小于直角; B.等于直角; C.大于直角; D.大于或等于直角一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C二、1.3;2.;3.锐角;4.;6.和;7.;8.;9.;10.;12..三1.A;2.D;3.A;4.C;5.B;6.C;7.B;10.C;11.D;12.D;13.C;。
初一数学三角形公式总结归纳数学三角公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
下面是小编为大家整理的关于初一数学三角形公式,希望对您有所帮助!常见三角诱导公式公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα初中数学三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角形的公式定理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方。
第四章:三角形第1节 认识三角形一.三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的几何图形叫作三角形. 如右图,线段AB 、BC 、CA 是三角形的边,点A 、B 、C 是三角形的顶点,∠A 、∠B 、∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角,记作“△ABC ”. 二.三角形的分类: 1. 三角形按边分类⎪⎩⎪⎨⎧⎩⎨⎧等边三角形三角形底边和腰不相等的等腰等腰三角形不等边三角形三角形2.三角形按角分类⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜三角形直角三角形三角形三.面积公式 1.)(21是底边上高是三角形的底边,h a ah S =. 2.高中位线⨯=S . 3.)).(2())()((海伦公式是三角形的三边,、、cb a pc b a c p b p a p p S ++=---=四.三角形的性质 (一).三角形的内、外角和1. 定理:三角形内角和等于︒180.2. 推论:直角三角形的两锐角互余.3. 定理:三角形外角和等于︒360.4. 定理:三角形的外角等于与其不相邻的两个内角之和.5. 推论:三角形的一个外角大于任何一个和它不相邻的内角. (二).三角形的三边关系1.三角形的任意两边之和大于第三边.2.三角形的任意两边之差小于第三边.3.最大边≤l 31<l 21(l 为三角形周长). (三).三角形中的重要线段 1.高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫作三角形的高线(简称三角形的高).2.中线:连接三角形的一个顶点和它所对的边的中点的线段叫作三角形的中线.3.角平分线:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫A EBD CO作三角形的平分线.注:三角形的三条角平分线、三条中线、三条高都相交于一点,分别叫三条角的内心、重心、垂心.(四).三角形具有稳定性 (五).整数边三角形:边长都是整数的三角形称为整数边三角形. 五、典型题分类分析例1.如图,图中有几个三角形?请分别表示出来,∠AEC 、∠ADC 分别是哪些角的内角?以BD 为边的三角形有哪些?分析:从A 点开始计:△ABC 、△ABD 、△ADC 、△AEC 、△AEO 、△AOC ,以B 点:△BEC ,以C 点:△COD.例2.如图,AB ∥CD ,AD ,BC ,相交于点O ,∠A=35°,∠COD=140°,求∠C 的度数. 分析:在△COD 中,已知∠COD=104°, 只要设法求得∠D 的度数,利用三角形 的内角和为180°,即可求出∠C 的度数.例3.判断满足下列条件的△ABC 是锐角三角形,直角三角形,还是钝角三角形? (1)∠A=30°,∠B=∠C ;(2)∠A:∠B :∠C=1:2:3.分析:根据条件,利用三角形内角和等于180°,求出各角例4.下列各组中,三条线段的长度能否构成三角形? (1)3、5、9 (2)5、6、11 (3)5、6、9 分析:用较短的两条线段之和与最长线段作比较A B C D O例5.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?分析:因为∠BAD=∠CAD,所以AD是△ABC的角平分线,AF是△ABE的角平分线。
初一数学知识点总结之三角形知识点概述
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作△ABC,读作三角形ABC。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的动摇性
三角形具有动摇性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延伸线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾依次相接组成的图形叫做多边
形。
衔接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习镶嵌。
初一数学三角形证明题1. 证明三角形内角和等于180度证明我们知道,三角形有三个内角,分别为角A、角B和角C。
要证明三角形的内角和等于180度,我们可以使用下面的方法:1. 假设角A的度数为x度。
2. 根据三角形的定义,角A、角B和角C的度数相加等于180度。
3. 根据假设,我们可以得到下面的等式:x + 角B + 角C = 180度。
4. 将等式两边的x相消,我们得到:角B + 角C = 180度 - x度。
5. 角B + 角C的度数等于180度减去角A的度数,即180度 -x度。
6. 根据三角形定义,角A的度数加上角B和角C的度数等于180度。
7. 将等式两边的角A的度数相消,我们得到:角B + 角C =180度。
8. 因此,我们可以证明三角形的内角和等于180度。
2. 证明等腰三角形底角相等证明等腰三角形是一种特殊的三角形,其中两条边的长度相等。
我们要证明等腰三角形的底角相等,可以使用下面的方法:1. 假设等腰三角形的两边长度相等,分别为a。
2. 由于等腰三角形的两边相等,所以其底边也相等。
3. 假设等腰三角形的底角分别为角A和角B。
4. 我们可以得到下面的等式:角A + 底角 + 角B = 180度。
5. 底角的度数等于180度减去角A和角B的度数。
6. 由于等腰三角形的底边相等,所以角A和角B的度数相等。
7. 角A和角B的度数相等,所以底角的度数也相等。
8. 因此,我们可以证明等腰三角形的底角相等。
这些证明题可以帮助学生巩固对三角形的性质和定义的理解,同时培养他们的逻辑思维能力和推理能力。
通过练习和理解三角形的证明题,学生可以更好地掌握数学知识。
初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
初一三角形的面积和周长计算在学习初一数学的三角形课程中,面积和周长的计算是非常重要的基础知识点。
本文将介绍如何准确计算三角形的面积和周长,并提供一些相关的公式和例题说明。
一、三角形的面积计算计算三角形的面积通常有两种常见方法:使用底边和高的关系,以及使用两边夹角和其中一边的关系。
下面将分别介绍这两种方法。
方法一:使用底边和高假设有一个三角形ABC,底边为BC,高为h。
根据定义可知,三角形的面积等于底边乘以高的一半。
公式:面积 = 1/2 ×底边 ×高例如,如果底边BC的长度为6,高h的长度为4,则三角形ABC 的面积为1/2 × 6 × 4 = 12平方单位。
方法二:使用两边夹角和其中一边假设有一个三角形ABC,边AB和边AC之间的夹角为α,其中一边BC的长度为a。
使用三角函数中的正弦函数,可以计算出三角形的面积。
公式:面积 = 1/2 ×边AB ×边AC × sin(α)例如,如果边AB的长度为5,边AC的长度为8,夹角α的度数为30,则三角形ABC的面积为1/2 × 5 × 8 × sin(30°) ≈ 10平方单位。
上述两种方法都可以用来计算任意三角形的面积,选择适合的方法取决于已知条件的不同。
二、三角形的周长计算计算三角形的周长需要知道三条边的长度。
三角形的周长等于三条边的长度之和。
公式:周长 = 边AB + 边AC + 边BC例如,如果边AB的长度为3,边AC的长度为4,边BC的长度为5,则三角形ABC的周长为3 + 4 + 5 = 12单位长度。
三、例题说明为了更好地理解三角形的面积和周长计算方法,以下将提供一些具体的例题说明。
例题一:已知一个直角三角形,其直角边长度分别为3和4,求其面积和周长。
解:首先,我们可以计算出斜边的长度。
根据勾股定理:斜边的平方等于直角边的平方和。
初一数学——三角形知识点的解析三角形是初中数学中的重要内容,掌握三角形的知识点对于解题非常关键。
本文将为大家解析初一数学中的三角形知识点,帮助同学们更好地理解和运用。
一、三角形的定义及分类三角形是由三条线段组成的图形,其中任意两条线段之和必须大于第三条线段。
根据它的三边长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
1. 等边三角形:三条边的长度相等,且三个内角都是60度。
2. 等腰三角形:两条边的长度相等,两个底角也相等。
3. 普通三角形:三条边的长度各不相等,三个内角也各不相等。
二、三角形的性质和定理了解三角形的性质和定理可以帮助我们更好地理解和解决与三角形相关的问题。
1. 三角形的内角和定理:三角形的三个内角的和等于180度。
2. 等腰三角形的性质:等腰三角形的底角相等,顶角为其余两个角的两倍。
3. 等边三角形的性质:等边三角形的三个内角均为60度。
4. 直角三角形的性质和勾股定理:直角三角形的两条边平方和等于斜边的平方。
即a² + b² = c²,其中a、b分别为两条直角边的长度,c为斜边的长度。
三、三角形的面积计算公式计算三角形的面积是数学中的常见问题,下面介绍两种常用的计算公式。
1. 根据底边和高计算:已知三角形的底边长a和相应的高h,可以使用公式 S = 1/2 × a × h 计算三角形的面积S。
这个方法适用于所有类型的三角形。
2. 根据两边夹角和边长计算:已知两边的夹角θ和两边的长度a、b,可以使用公式S = 1/2 × a × b × sin(θ) 计算三角形的面积S。
这个方法适用于已知两边和夹角的情况。
四、相似三角形相似三角形是指具有相似形状但大小不同的三角形。
相似三角形的边长比例相等,对应角度相等。
1. 相似三角形的判定:如果两个三角形的对应角相等,则这两个三角形是相似的。
2. 相似三角形的边长比例:相似三角形的边长比例等于对应边的比例。
初一数学下册三角形解题方法初一数学下册三角形解题方法三角形是初中数学中的重要知识点,也是应用广泛的几何形状之一。
学生应在初一年级学习三角形及其相关知识。
从识别各种三角形到计算三角形面积和周长,学习者都要经过一系列的学习和练习。
下面将为您详细介绍初一数学下册三角形解题方法。
1. 三角形的分类三角形按照边长的关系可以分为以下三种类型:等边三角形:三边长度相等的三角形。
等腰三角形:两边长度相等的三角形。
普通三角形:三边长度均不相等的三角形。
在解题中,需要根据三角形类型来选择合适的解题方法。
2. 角的大小关系角的大小关系包括以下三种情况:锐角三角形:三个角均小于90度的三角形。
直角三角形:其中一个角为90度的三角形。
钝角三角形:其中一个角大于90度的三角形。
在计算三角形面积和周长时,需要考虑角的大小关系,选择合适的公式和方法。
3. 解题方法3.1 计算三角形的周长周长是三角形边长的和,可以用以下公式计算:周长 = 第一条边长 + 第二条边长 + 第三条边长3.2 计算三角形的面积三角形的面积可以使用以下公式进行计算:三角形面积 = 底边长度 x 高 ÷ 2其中,底边长度指的是选定三角形中的一条边,高为从底边垂直引出的一条线段,可以是任意一条边。
在计算面积时,需要首先确定底边和高,然后代入公式进行计算。
3.3 解题技巧(1)根据图形特征选取合适的公式进行计算。
(2)在解题中,需要注意单位的统一,例如长度单位要一致。
(3)注意计算中的取整问题,结果四舍五入时要符合精度要求。
(4)在解答过程中,需要书写清晰、简明扼要的文字说明,方便自己和他人理解。
4. 练习题做一些练习题,可以加深对三角形的理解和计算技巧的掌握。
例如:(1)有一架飞机从某地起飞,在300m的高度上飞行5km后,又在500m的高度上飞行5km,最后又在200m的高度上飞行5km到达目的地。
这架飞机一共飞行了多少距离?(2)如图,已知等腰三角形ABC,且AB=AC=4cm,BD为高线,求△ABD的面积。
初⼀数学三⾓形知识点初⼀数学三⾓形知识点归纳⼀、与三⾓形有关的线段1、不在同⼀条直线上的三条线段⾸尾顺次相接组成的图形叫做三⾓形2、等边三⾓形:三边都相等的三⾓形3、等腰三⾓形:有两条边相等的三⾓形4、不等边三⾓形:三边都不相等的三⾓形5、在等腰三⾓形中,相等的两边都叫腰,另⼀边叫底,两腰的夹⾓叫做顶⾓,腰和底边的夹⾓叫做底⾓6、三⾓形分类:不等边三⾓形等腰三⾓形:底边和腰不等的等腰三⾓形等边三⾓形7、三⾓形两边之和⼤于第三边,两边之差⼩于第三边注:1)在实际运⽤中,只需检验最短的两边之和⼤于第三边,则可说明能组成三⾓形2)在实际运⽤中,已经两边,则第三边的取值围为:两边之差<第三边<两边之和3)所有通过周长相加减求三⾓形的边,求出两个答案的,注意检查每个答案能否组成三⾓形8、三⾓形的⾼:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂⾜为D,所得线段AD叫做△ABC的边BC上的⾼9、三⾓形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三⾓形周长之差为x,则存在两种可能:即可能是第⼀个△周长⼤,也有可能是第⼀个△周长⼩10、三⾓形的⾓平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的⾓平分线11、三⾓形的稳定性,四边形没有稳定性⼆、与三⾓形有关的⾓1、三⾓形⾓和定理:三⾓形三个⾓的和等于180度。
证明⽅法:利⽤平⾏线性质2、三⾓形的外⾓:三⾓形的⼀边与另⼀边的延长线组成的⾓,叫做三⾓形的外⾓3、三⾓形的⼀个外⾓等于与它不相邻的两个⾓的和4、三⾓形的⼀个外⾓⼤于与它不相邻的任何⼀个⾓5、三⾓形的外⾓和为360度6、等腰三⾓形两个底⾓相等三、多边形及其⾓和1、多边形:在平⾯,由⼀些线段⾸尾顺次相接组成的图形叫做多边形2、N边形:如果⼀个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、⾓:多边形相邻两边组成的⾓叫做它的⾓4、外⾓:多边形的边与它的邻边的延长线组成的⾓叫做多边形的外⾓5、对⾓线:连接多边形不相邻的两个顶点的线段,叫做多边形的对⾓线6、正多边形:各个⾓都相等,各条边都相等的多边形叫做正多边形7、多边形的⾓和:n边形⾓和等于(n-2)*1808、多边形的外⾓和:360度注:有些题,利⽤外⾓和,能提升解题速度9、从n边形的⼀个顶点出发,可以引n-3条对⾓线,它们将n边形分成n-2个△注:探索题型中,⼀定要注意是否是从N边形顶点出发,不要盲⽬背诵答案10、从n边形的⼀个顶点出发,可以引n-3条对⾓线,n边形共有对⾓线23)-n(n条。
一选择题(每题3分,共24分)
1、下面是四组线段的长度,哪一组能组成三角形( )
A 、2,2,4
B 、5,5,5
C 、11,5,6
D 、3,8,24 2、下面哪一条线段能把三角形分成面积相等的两个三角形( ) A 、角平分线 B 、中线 C 、高 D 、以上都不是 3、下列说法错误的是( )A 三条边对应相等的三角形全等 B 两个角及夹边对应相等的三角形全等 C 两边及夹角对应相等的三角形全等 D 两条边及一角对应相等的三角形全等
4、如图,已知AC 与BD 相交于点O ,AO=CO , BO=DO ,图中有几对全等三角形( )
A 、2
B 、3
C 、4
D 、5
5、下列说法错误的是( )A 三角形中至少有两个锐角B 锐角三角形中任意两个锐角的和大于90° C 三角形的三个内角的比为1:2:3,则它是直角三角形 D 面积相等的两个三角形全等
6 在△ABC 中, ∠A=60°, ∠B,∠C 的角平分线相交于点O,则∠BOC 的度数是( ) A. 65° B. 115° C. 130° D. 100° 7、如图,∠BAC=∠DAC 下列哪个条件不能使得△ABC ≌△ADC ( ) A 、AB=AD B 、BC=DC C 、∠B=∠D D 、∠BCA=∠DCA 8、如图,AB=CD ,∠BAE=∠DCF ,BD=8,EF=4,则BE=( ) A 、4 B 、8 C 、2 D 、
12
9.如图,AB=AC,BE,CF 分别为AC,AB 边上的高,则图中全等三角形有 ( ) A. 1对 B. 2对 C.3对 D.4对
10.如图,△AEB 和△BDC 均为等边三角形,且在线段AC 的同侧,则下列结论错误的是 ( ) A. △ABD ≌△EBC B. △NBC ≌△MBD C. △ABEF ≌△BCD D. △MAB ≌△NEB
11 在△ABC 中, ∠A= ∠B= ∠C,则△ABC 是( )
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 等腰直角三角形
12已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为L ,那么
L 的取值范围是( )
A 、5厘米≤L <7厘米
B 、1厘米<L ≤5厘米
C 、L=5厘米
D 、1厘米<L <7厘米
13下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,
③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900
,其中判断正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 14.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是 ( ) (A ) ∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ (B ) ∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ (C ) ∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ (D ) AB=A ′B ′,AC=A ′C ′,BC=B ′C ′
15.如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是 ( )
(A )∠DAC=∠BCA (B )AC=CA (C )∠D=∠B (D )AC=BC 二、填空题
16.若等腰三角形的周长为11㎝,且腰长为整数,则腰长为 . 17.如图所示,已知BD=BC ,∠1=∠2,则AB= ,∠ABD= .
18.如图所示,在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,OD ⊥BC 于点D ,如果AB=25㎝,BC=20㎝,AC=15㎝,且S △ABC =150 cm 2,那么OD= cm
19.若一个三角形的三条高的交点既不在三角形内,也不在三角形外,则此三角形是 .
20.已知△ABC ≌△DEF ,BC=EF=6㎝,△ABC 的面积为18cm 2,则EF 边上的高为 . 21.已知两个全等的三角形周长都为48,且已知其中一个三角形的三边长是三个连续的自然数,则另一个三角形的三边长为
≌ΔBOC 。
1 2 1
3
第17题图
第18题图
23.如图9,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF= 。
24.如图10,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠=∠或∥,就可证明ΔABC≌ΔDEF。
三、解答题
1.如图所示,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么样的位置关系?试说明你的结论的正确。
2.如图所示,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,试说明:
(1)△ABD≌△ACD.
(2)BE=CE.
3.已知:点 A、C、B、D在同一条直线,AC=BD,∠M=∠N,AM=CN。
MB∥ND吗?为什么?
4、如右图,AB=AD ,∠BAD=∠C AE,AC=AE ,求证:AB=AD
5、已知:如图,AB=CD,AB∥DC.求证:AD∥BC, AD=BC
6、(7分)已知:如图,,。
求证:。
7、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=
CD.
试说明AD是∠BAC的平分线。
8、如图,在一小水库的两测有A、B两点,A、B间的距离不能直接测得,采用方法如下:取一点可以同时到达A、B的点C,连结AC并延长到D,使AC=DC;同法,连结BC并延长到E,使BC=EC;这样,只要测量CD的长度,就可以得到A、B的距离了,这是为什么呢?根据以上的描述,请画出图形,并写出已知、求证、证明。
A
B
C D E
A
B
C
第1题图
第2题图第3题图
第5题图。