岩石力学岩石的强度理论共36页文档
- 格式:ppt
- 大小:4.21 MB
- 文档页数:36
第四节岩石的强度理论•研究岩石破坏原因、过程及条件的理论—岩石的强度理论。
•将表征岩石强度条件的函数称为岩石的强度准则,•而将表征岩石破坏条件的函数称为岩石的破坏判据。
一、一点的应力状态•1、正负号的规定①压为正,拉为负;②剪应力是使物体产生逆时针转为正,反之为负;③角度以X轴正向沿逆时针方向转动所形成的夹角为正,反之为负。
•2、一点的应力的表示方法三个正应力:σx 、σy、σz,正应力的角标为正应力作用面的外法线方向;剪应力的角标为:第一个角标表示剪应力作用面的外法线方向;第二个角标表示剪应力作用的方向。
三对剪应力:在平面问题中,独立的应力分量只有三个,即:σx 、σy 、τxyτxy =τyxτyz =τzyτzx =τxz3、平面问题的简化•①平面应力问题(垂直于平面方向应力为零),•如薄板问题;•②平面应变问题(垂直于平面方向应变为零),•如大坝、路堤、隧道横断面等问题。
•不论那一种平面问题,用弹性力学的方法进行分析所得的结果,可以互相转换:平面应力计算公式中的E用E/(1-μ2)、μ用μ/ (1-μ)代入,即可将平面应力问题的计算公式转换成平面应变问题的计算公式。
4、基本应力公式如图所示:以二维平面问题为例任意角度倾斜截面上的应力计算公式下:τxyτyxτyxτxyσxσyσyσxσnτnαατ-ασ-σ+σ+σ=σ2sin 2cos 22xy yx yx n ατ+ασ-σ=τ2cos 2sin 2xy yx n 若上述公式对求导,即可求得最大、最小主应力的表达式如下:223122xy y x yx τ+⎪⎪⎭⎫ ⎝⎛σ+σ±σ+σ=σσ应力圆点面对应——应力圆上某一点的坐标值对应着微元某一方向面上的正应力和切应力;转向对应——半径旋转方向与方向面法线旋转方向一致;二倍角对应——半径转过的角度是方向面法线旋转角度的两倍。
最大主应力与σx 的夹角可按下式求得:yx xytg σστθ-+=22此外,在分析任意角的应力状态时,也常用最大、最小主应力表示:ασ-σ+σ+σ=σ2cos 223131n ασ-σ=τ2sin 231n莫尔应力圆的表示方法如下:231223122⎪⎭⎫ ⎝⎛σ-σ=τ+⎪⎭⎫ ⎝⎛σ+σ-σn n )0,2(31σσ+圆心为231σ-σ半径等于o ′σ3σ12αoστ2α-2ασ1σ1σ3σ3α-αDD ′τσσ1σ3ODD ′强度理论:关于材料破坏原因和条件的假说。
岩石强度理论一、岩石的破坏类型岩石在不向的应力状态条件下,将发生不同形式的变形进而发展到破坏。
通过在试验室对岩石试件进行单向和三向压缩试验,以及在井下对巷道周围岩体和矿柱等破坏的观察看到: 1.脆性拉伸破坏 在特定的单向压缩条件下,如井下房柱法或全面法采场中孤立矿柱、巷道交叉处的矿柱等可能发生脆性拉伸破坏。
在试件内部和矿柱中可看到与加载方向平行的裂隙(图2—24)。
所以发生这样分布的裂隙是由于在试件端面与压力试验机加压板间无摩擦力或很小,矿柱和顶板间有软弱夹层。
两者在压力作用下,发生侧向膨胀变形。
变形发展到—定程度发生断裂,使试件或矿柱中产生许多平行于加载方向的裂隙而破坏。
2.剪切破坏 在单向或小侧向压力的三向压缩时,如井下巷道顶角、虏柱法、全面 法采场中孤立矿柱等会产生剪切破坏。
在试什或矿柱中出现一组与最大主应力作用线方向 呈30—35交角的共轭裂隙(图2—25)——x 型分布的裂隙o3.塑性流动破坏 在高侧向压力三向压缩时,发生塑性流动破坏。
二、一点应力状态的表示方法在平面应力状态下,如图7.5(a)所示,已知作用于某一点上两个主应力为1σ及3σ,则法线与最大应力1σ方向夹角为α的平面上法向应力ασ及剪应力ατ为:消夫角α,上式进一步变为莫尔应力圆上任一点P 的坐标(,)P ααστ代表法线与最大主应力1σ方向夹角为α的平面上法向应力ασ及剪应力ατ的大小,而莫尔应力圆上各个点的坐标代表材料中某一点不同方问平面上法向应力及剪应力的大小。
因此,材料中一点应力状态可以用一个莫尔应力圆来表。
三、强度曲线的获得当前广泛采用的是倾斜压模剪切法,是将圆柱形或立方体(5x5x5cm)试件放在两个钢制的倾斜压模之间,如图2—13所示。
而后把夹有试件的压模放在压力试验机上加压。
当施加强荷达到某一值时,试件沿预定剪切面AB 剪断。
为使加裁时在剪切破坏过程中,压模发生侧向移动不受加压板与压模端面之间摩擦力的阻碍,在压模端面与加压板之间放滚柱板。
第四节岩石的强度理论•研究岩石破坏原因、过程及条件的理论—岩石的强度理论。
•将表征岩石强度条件的函数称为岩石的强度准则,•而将表征岩石破坏条件的函数称为岩石的破坏判据。
一、一点的应力状态•1、正负号的规定①压为正,拉为负;②剪应力是使物体产生逆时针转为正,反之为负;③角度以X轴正向沿逆时针方向转动所形成的夹角为正,反之为负。
•2、一点的应力的表示方法三个正应力:σx 、σy、σz,正应力的角标为正应力作用面的外法线方向;剪应力的角标为:第一个角标表示剪应力作用面的外法线方向; 第二个角标表示剪应力作用的方向。
三对剪应力: 在平面问题中,独立的应力分量只有三个,即: σx 、σy 、 τxyτxy = τyxτyz = τzyτzx = τxz3、平面问题的简化•①平面应力问题(垂直于平面方向应力为零),•如薄板问题;•②平面应变问题(垂直于平面方向应变为零), •如大坝、路堤、隧道横断面等问题。
•不论那一种平面问题,用弹性力学的方法进行分析所得的结果,可以互相转换:平面应力计算公式中的E用 E /(1- μ2)、μ用μ/ (1- μ)代入,即可将平面应力问题的计算公式转换成平面应变问题的计算公式。
4、基本应力公式如图所示:以二维平面问题为例任意角度倾斜截面上的应力计算公式下:τxyτyxτyxτxyσxσyσyσxσnτnαατ-ασ-σ+σ+σ=σ2sin 2cos 22xy yx yx n ατ+ασ-σ=τ2cos 2sin 2xy yx n 若上述公式对求导,即可求得最大、最小主应力的表达式如下:223122xy y x yx τ+⎪⎪⎭⎫ ⎝⎛σ+σ±σ+σ=σσ应力圆点面对应——应力圆上某一点的坐标值对应着微元某一方向面上的正应力和切应力;转向对应——半径旋转方向与方向面法线旋转方向一致;二倍角对应——半径转过的角度是方向面法线旋转角度的两倍。
最大主应力与σx 的夹角可按下式求得:yx xytg σστθ-+=22此外,在分析任意角的应力状态时, 也常用最大、最小主应力表示:ασ-σ+σ+σ=σ2cos 223131n ασ-σ=τ2sin 231n莫尔应力圆的表示方法如下: 231223122⎪⎭⎫ ⎝⎛σ-σ=τ+⎪⎭⎫ ⎝⎛σ+σ-σn n )0,2(31σσ+圆心为 231σ-σ半径等于o ′σ3σ12αo στ2α-2ασ1σ1σ3σ3α-αDD ′τσσ1 σ3O DD ′强度理论:关于材料破坏原因和条件的假说。