有心圆锥曲线与定点弦有关的两个性质
- 格式:pdf
- 大小:94.35 KB
- 文档页数:2
圆锥曲线定点弦的一个性质湖南省常德市第六中学 (415003)彭世金本文介绍圆锥曲线定点弦的一个性质,并说明它在解题中的应用.定理 1 若椭圆2222:1(0)x y C a b a b+=>>的一条动弦AB 过定点(,0)(,0)T t t a t ≠±≠, 则在x 轴上存在定点(,0)M s (其中222222()2a b t a c s a t++=),使MA MB ⋅u u u r u u u r 为定值22.s a - 证明 当动弦AB 所在直线与x 轴重合时,(,0),(,0),A a B a - 22(,0)(,0)MA MB a s a s s a ⋅=--⋅-=-u u u r u u u r.当直线AB 与x 轴不重合时,设直线AB 的方程为,x my t =+1122(,),(,),A x y B x y由2222220x my t b x a y a b =+⎧⎨+-=⎩消去x 并化简整理得: 22222222()2()0.b m a y b mty b t a +++-=根据韦达定理有2122222,b mt y y b m a -+=+22212222().b t a y y b m a -⋅=+11221122(,)(,)(,)(,)MA MB x s y x s y my t s y my t s y ⋅=-⋅-=+-⋅+-u u u r u u u r221212(1)()()()m y y m t s y y t s =++-++-222222222222()2(1)()()b t a b mtm m t s t s b m a b m a --=+⋅+-⋅+-++ 22222222222()2a b t a st a c s a b m a +-+=-++ 由222222()2a b t a c s a t ++=, 得222222()20,a b t a st a c +-+= 于是有 22MA MB s a ⋅=-u u u r u u u r.综上可知,结论成立.由定理1的证明知, 当s a =±时, 则有222222222()2()a b t a a t a c MA MB b m a+-±+⋅=+u u u r u u u r .若0MA MB ⋅=u u u r u u u r ,则有222222()2()0()a b t a a t a c t a +-±+=≠±,解此方程得2222();a a b t a b -=±+ 若2222(),a a b t a b -=±+必有222222()2()0,a b t a a t a c +-±+=从而有0MA MB ⋅=u u u r u u u r .于是有推论1 设AB 是椭圆2222:1(0)x y C a b a b+=>>的一条动弦(,A B 异于左右顶点),⑴若1(,0)M a -是椭圆C 的左顶点,则110M A M B ⋅=u u u u u r u u u u u r的充要条件是动弦AB 过定点22122()(,0)a a b T a b --+;⑵若2(,0)M a 是椭圆C 的右顶点,则220M A M B ⋅=u u u u u r u u u u u r的充要条件是动弦AB 过定点22222()(,0).a a b T a b -+仿定理1的证法,可证双曲线和抛物线的类似性质:定理2若双曲线2222:1(,0)x y C a b a b-=>的一条动弦AB 过定点(,0)(,0)T t t a t ≠±≠, 则在x 轴上存在定点(,0)M s (其中222222()2a b t a c s a t-+=),使MA MB ⋅u u u r u u u r 为定值22.s a - 推论2 若AB 是双曲线2222:1(,0,)x yC a b a b a b-=>≠的一条动弦(,A B 异于顶点),⑴若1(,0)M a -是双曲线C 的左顶点,则110M A M B ⋅=u u u u u r u u u u u r的充要条件是动弦AB 过定点22122()(,0);a a b T a b+-- ⑵若2(,0)M a 是双曲线C 的右顶点,则220M A M B ⋅=u u u u u r u u u u u r的充要条件是动弦AB 过定点22222()(,0).a a b T a b +-定理3 若抛物线2:2(0)C y px p =>的一条动弦AB 过定点(,0)(0)T t t ≠,O 是坐标原点,则OA OB ⋅u u u r u u u r为定值22t pt -.推论 3 若AB 是抛物线2:2(0)C y px p =>的一条动弦(,A B 异于顶点),O 是坐标原点,则0OA OB ⋅=u u u r u u u r的充要条件是动弦AB 过定点(2,0)T p .例1 (2007年高考山东卷理科第21题)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.⑴求椭圆C 的标准方程;⑵若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.解 ⑴ 所求椭圆C 的标准方程为22143x y +=(过程略)⑵ 由⑴知椭圆C 的右顶点(2,0)D ,因为以AB 为直径的圆过椭圆的右顶点(2,0)D ,所以0,DA DB ⋅=u u u r u u u r 由推论1知弦AB 所在直线l 必过定点2222()(,0),a a b T a b-+由24,a =23b =知,2222()2(43)2,437a a b a b --==++即直线l过定点2(,0).7T 例 2 (2007年高考湖南卷理科第20题)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于,A B 两点.(I )若动点M 满足1111F M F A F B F O =++u u u u r u u u r u u u r u u u u r(其中O 为坐标原点),求点M 的轨迹方程;(II )在x 轴上是否存在定点C ,使CA CB ⋅u u u r u u u r为常数?若存在,求出点C 的坐标;若不存在,请说明理由.解 (I )点M 的轨迹方程是22(6)4x y --=(过程略)(II )由222x y -=得222a b ==,双曲线的右焦点2F 的坐标是2(2,0)F ,因动弦AB 过定点2(2,0)F ,故2,t c ==由定理2知,存在定点(,0),C s 其中222222()2a b t a c s a t-+== 22(22)2221,222-⨯+⨯==⨯⨯即(1,0),C 使CA CB ⋅u u u r u u u r 为常数2212 1.s a -=-=-例3 (2006年高考上海理科卷第20题) 在平面直角坐标系x O y 中,直线l 与抛物线22y x =相交于A 、B 两点.⑴求证:“如果直线l 过点T(3,0) ,那么3OA OB ⋅=u u u r u u u r”是真命题;⑵写出⑴中命题的逆命题,判断它是真命题还是假命题,并说明理由.解 ⑴因直线l 过定点T(3,0) ,故3,t =由22y x =知1,p =据定理3,可得2223213 3.OA OB t pt ⋅=-=-⨯⨯=u u u r u u u r综上所述, “如果直线l 过点T(3,0) ,那么3OA OB ⋅=u u u r u u u r”是真命题.⑵逆命题是:设直线l 交抛物线22y x =于A 、B 两点,如果⋅=3,那么该直 线过点T(3,0) .该命题是假命题.由抛物线22y x =得1,p =故2222,t pt t t -=-令223,t t -=得1,t =-或 3.t =当1t =-时,过点(1,0)T -的直线2:(1)3l y x =+与抛物线22y x =相交于A,B 两点,此时222(1)21(1)3,OA OB t pt ⋅=-=--⨯⨯-=u u u r u u u r 而T(3,0) 不在直线2:(1)3l y x =+上.。
圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当e>1时为双曲线。
两千多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。
阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
事实上,阿波罗尼在其著作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。
定义几何观点用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线(conic sections)。
通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。
具体而言:1) 当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2) 当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3) 当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4) 当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆。
5) 当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点。
6) 当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线的一支(另一支为此圆锥面的对顶圆锥面与平面的交线)。
7) 当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。
代数观点在笛卡尔平面上,二元二次方程ax^2+bxy+cy^2+dx+ey+f=0的图像是圆锥曲线。
根据判别式的不同,也包含了椭圆,双曲线,抛物线以及各种退化情形。
焦点-准线观点(严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。
但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。
给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。
圆锥曲线常用结论1.圆锥曲线的定义:(1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。
若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
抛物线定义中,定点和定直线是焦点和准线,要注意定点不在定直线上,否则轨迹为过定点且和定直线垂直的直线.(2)抛物线定义给出了抛物线上的点到焦点距离与此点到准线距离间的关系,要善于运用定义对它们进行相互转化。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
复习参考.十。
7擞’7(2008年第12期高中版)一类解析几何问题(续)』“圆锥曲线上一定点引出两弦’’的有关性质研究综述。
430010武汉市第二中学田化澜(接上期)3关于椭圆有关问题的综合处理f*'l t设M(x。
,Y o)为椭圆b2茗2+口2y2=a2b2上一定点,M A与M B为椭圆任意两弦,其倾斜角分别为al,a2。
试证(1)当t ant r I t ant x2=t(常数),则直线A B过定点或有定向;(2)当t anct.+t ana2=t(常数),则直线A8过定点或有定向;(3)当a。
+%=一(定值),则直线A B过定点或有定向.思考方法1考虑到以上所给条件,转换后涉及到z.一茗。
,Y。
一儿,%一粕,扎一%等基本式,故设法将椭圆变换成以膏--X。
,Y一%为元之方程,如b2茗2+口2y2=口262=争62(茗一名o)2+a2(Y—yo)2+262X0(髫一X0)+ 2a2Y o(Y—yo)=0(注意到b2‰2+a2y02=aZ b2) (按此A(x。
,Y。
),B(x:,Y2)在椭圆上,代入方程即可出现所需基本式)为配合这一变换,将A B的方程设为m(x—X o)+n(,,一%)=l,为将tarter。
=等舯理:=鬟融于过A、日两点的曲线方程之中,于是按曲线系思想方法,设法将方程变为以茗一算。
,Y一%为元的二元二次次方程.如将变换的椭圆方程再变换为:b2(茗一菇o)2+口2(Y—Y o)2+[262工o(茗一‰)+ 2a2Y o(Y-Y o)][m(茗一"go)+n(y—Y o)]=0,显然a(x,,Y.),B(x:.Y2)适合方程,即此方程表示的曲线过A,B两点,将上述方程整理成:口2(1+2nyo)(嚣)2+(2b2nzo+2a2m yo)嚣+b2(1+2r ex。
)=0.此方程应有两根.即!血=t a:t ana2,一=●●——=2,石I一‰石2一茗。
故有呲tails"#2--等a1焉ny.,t+Z J2b2舭o+2a‘m yo tanaj¨明%一了百1丽zrty,‘口l十-J(1)若t anal。
复习参考中。
7擞’7(2008年第11期高中版)3l一类解析几何问题——“圆锥曲线上一定点引出两弦”的有关性质研究综述430010武汉市第二中学田化澜.回顾与思考早在80年代初,出现过两道试题:其一过抛物线Y2=2肚(p>0)的顶点0作两弦D A与O B,若伽上O B,则弦A B必过定点.√2.?其二过椭圆与+号=1(口>b>o)上一定点Mq U任作两弦M A与M B,若M A与M B倾斜角互补,则弦A B斜率为定值(肘异于长轴上两顶点).显然,其一是LA O B=90。
,kD^koa=一l(定值)时,弦A B过定点的问题.其二是为弦M A与M B倾斜角之和,口。
+02=订(定值)时,弦A B有定向的问题.当然,因恢复高考不久,资料甚少,这类问题遇见不多,探究方法有限,因此推证方法比较单一,90年代后,此类问题又多次出现过,常常出现在高考试卷与竞赛试卷中,如:问题1(2004年北京高考试题)过抛物线,=弛(P>0)上一定点,P(x。
,Y。
)(Y>O)作两直线分别交抛物线于a(x,,Y。
),B(x:,Y2)两点.(1)略;(2)当PA与PB的斜率存在且倾斜角互补时,求必的值,并证明直线船的斜率是非零常数.yo问题2(2001年山东高中竞赛题)已知A(x。
,Y o)是抛物线Y2=2≯(P>0)上一定点,过点A 作抛物线两弦A曰与A C,若k仙k。
=m(m≠0),求证:直线B C恒过一定点.可以看出,这一类问题已逐步有些变化和发展,归纳起来有三个方面:(1)定点由顶点(抛物线)变为曲线上任一定点;(2)两弦斜率k。
与k:,由k。
k:=一1扩广至k。
k2=m(m为非零实数).进而由k。
k:=m(常数)又推广到k。
+k2=m(常数),以上问题一与“其二”是m=0这一特殊情形,再进一步,又把问题推广到更一般问题:若两弦的倾斜角为日.与臼:,若9,+巩=日(常数).探讨两弦两端点连线是否过定点或有定向.(3)由抛物线类比研究椭圆、双曲线、一般非退化的圆锥曲线.关于这三个方面的问题,近十多年来,各地均有过不同形式的研究,对于其中某一类问题,解决方法也不尽相同,有的还是比较巧妙的.但系统性研究综合性较少,有的虽然思考方法很不错,作过综合处理,但思路与具体过程不太清晰,鉴于此,本文试图对这类问题作一个系统整理与归纳,揭示其实质,剖析其思想方法,以供诸位同行参考指正.1几个具体问题的不同处理方法与评析问题1点肘(X o,Y a)为抛物线广=2∥(P>0)上一定点,A、B为此抛物线上两动点,M A、M B的斜率分别为k。
圆锥曲线的定义与性质曲线名称圆(Circle)椭圆(Ellipse)双曲线(Hyperbola)抛物线(Parabola)标准方程x2+y2=r2(r>0)x y22221+=(a>b>0)a bx y22221-=(a,b>0)y2=2px(p>0)a bP P A抛物线的切点弦性质PF1+PF2=2a P PF1-PF2=2a抛物线的切点弦中点与极定义AF1BF2F1F2(2a>F F)12F1F2(0<2a<F F)12P M2M1B点连线的中点在抛物线上;特别地,若切点弦过抛物线体系PF1PF2=l( l>0且 l¹1)焦点三角形面积qS=b2tan△PF F122焦点三角形面积qS=b2cot△PF F122焦点 F,则ÐAPB为直角且PF^AB一P光学性质O切线方程x x+y y=r200F1F2切线方程x x y y002+2=1a bF1F2F切线方程x x y y02021-=a b切线方程y y=p x+x()00从一个焦点射出的光线的反射光线过另一个从一个焦点射出的光线的反射光线的反向延从圆心射出的光线的反射光线仍经过从焦点射出的光线的反射光线与对称轴平行焦点长线经过另一个焦点圆心P等张角线极坐标方程r=ep1-ecosq体系二对线段 AB张角相同的点的轨迹HlP PFPH=e PlHPFPH=eHlPA B PF=PH通径长F FF通径长通径长d=2p 2b2d==2epa2b2d==2epa体系BO定义1k×k=-PAPBAPAOPBk×k=-PAPBb2a2AOPBk×k=PAPBb2a2直线与圆锥曲线弦长公式!l=1+k x-x=1+m y-y=n×t-t22121212面积公式三垂径定理AMOBk×k=-1OMABAMOBba22k×k=-OM AB1AOM Bk×k=OMABb2a211212S=底×高 =水平宽×铅直高=l lsinq212位置关系椭圆的等效判别式 D=a2A2+b2B2-C2双曲线的等效判别式2(2222)D=C-a A-b B圆锥曲线的解题常见思路关键词一般情况过定点的直线弦长面积点与曲线的位置关系★引入参数控制运动,以交点坐标★弦长公式★利用共线或平行条件进行等积★将点代入圆锥曲线方程中再将定点在y轴上时用斜截式表示定点在x轴上时用倒斜横截式表示为中间变量表示其他所有几何量★两点间距离公式变换方程改写为不等式定点不在轴上时用参数方程表示★利用直线方程消去纵(横)坐标★三角形面积公式★若方程Px2+Qx+R=0的两根提示→将直线方程代入曲线方程(联立)→通过韦达定理消去另一坐标时,两根之差为x-x=12DP★四边形的面积公式12l l sinq12★四边形的对角线往往是相关的有时也直接求解坐标★注意参数的取值范围,需要保证★面积比往往转化为共线线段比直线与圆锥曲线相交关键词直线与圆锥曲线的位置关系焦点中点定比分点共线、平行、垂直★联立直线与曲线方程后通过判★两个焦点→体系一★注意取中点构造中位线★弦所在直线过焦点时,可补对应★利用斜率或向量表示别式判断★一个焦点★中点坐标公式★共线也可以利用点在另外两点准线后构造相似三角形提示★直接利用等效判别式判断→补焦点→体系一→补准线→体系二xx+x y+y=12,12y=22★利用定比分点坐标公式或利用直线的参数方程转化.所确定的直线上表示★注意利用极坐标方程★“x=a x(a¹-1)”21Û2æx+xöx x a.=ç12÷121èøa+关键词以AB为直径的圆过C垂直平分线关于直线…对称关于原点对称的两点与原点连线相互垂直★以AB为直径的圆过C★P在AB的垂直平分线上★A、B关于l对称★有关斜率的问题→体系三★利用相关直线设直线斜率ÛÐACB=90°ÛPA=PBÛl是AB的垂直平分线★注意取中点构造中位线★化齐次联立ÛMC=MA(M为AB中点)ÛPM^AB(M为AB中点)★注意对称变换下的几何不变量提示★斜率的比值计算可以平方后用★注意“姐妹圆”圆锥曲线的方程进行整理111=+r a b222R=a+b 222关键词与定点的两连线垂直向量的运算成锐角(直角、钝角)过…与…交点的曲线其他★利用相关直线设直线斜率★向量数乘→共线★转化为向量夹角★利用交点曲线系得到曲线方程★当运动由圆锥曲线上的单点驱向量和差→平行四边形法则借助向量数量积的符号判断动时注意利用圆锥曲线的参数方程★平移坐标系转化为与原点的连向量相等→形成平行四边形★极限思想,利用切线方程得到定线相互垂直的问题向量数量积→投影长度提示点或定值的具体数据★利用仿射变换★在求形如()()x-t x-t的值时,12可以将方程整理为形如改造椭圆为圆改造斜交直线为垂直直线20A(x-t)+B(x-t)+C=的形式2。
2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。
圆锥曲线上的定点定值子弦的性质——圆锥曲线顶点定值子弦性质的推广圆锥曲线上的定点定值子弦有着简洁的数学定义:子弦是圆锥曲线上满足特定点条件的子弦(又称定点定值子弦),满足定点定值子弦的条件既可以被定义为某点坐标值为常数,也可以单纯地定义为某点坐标值满足一个特定的关系或函数。
定点定值圆锥曲线的性质受到圆锥曲线的结构影响,它是由两个交于某点的曲线段组成的,曲线段之间的转折点可以是圆锥曲线顶点或另一曲线上某点,或者是圆锥曲线与其它曲线的交点。
受限于圆锥曲线的结构特征,圆锥曲线拥有独立的定点定值子弦性质,它们不受非定点定值子弦的影响。
由于圆锥曲线不具有较大的分支,它的定点定值子弦只能很少存在,而它们的曲线形状也受到结构特点的制约。
特别地,圆锥曲线顶点定值子弦(即定点为圆锥曲线顶点)是可以通过圆锥曲线结构中的曲率刻画出来的。
它由两个曲率有两个不同值但在给定点顶点处和两个曲线段组成,它们之间存在切线上的夹角度值,它们可以通过圆锥曲线的结构即曲率大小确定。
一般来说,圆锥曲线的定点定值子弦性质受到两个因素的影响,一个是它的曲率大小,另一个是曲线段的长度。
它的曲率影响它的曲线的拐点位置,这种拐点位置决定着子弦的弯曲程度以及它如何把分段合并在一起。
子弦的长度则影响着它的曲线水平位移,从而有着直接影响它的性质。
此外,根据曲面几何研究,定点定值子弦的条件受到它切线的长度影响,即曲线之间必有某种关系式来控制它们切线的倾斜,也就是说,圆锥曲线定点定值子弦不仅受到曲率大小和曲线段长度的影响,还受到它切线的长度的影响,因此,圆锥曲线的定点定值子弦也受到曲率大小、曲线段长度以及切线长度的影响。