冲刺天高中考文科数学解题策略 专题 三角函数与平面向量三 平面向量与代数的综合应用
- 格式:doc
- 大小:1.11 MB
- 文档页数:7
三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。
【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
高考数学 冲刺60天解题策略 专题二 三角函数与平面向量第四节 平面向量与几何的综合应用平面向量与几何的综合应用内容为每年高考必考内容,多以选择题(填空题)形式考查平面向量相关概念的几何意义及与平面几何知识的综合应用,或作为题设条件与解析几何知识综合以解答题形式出现,分值在4-12分左右;难度系数在0.3~0.6之间.考试要求 ⑴理解平面向量的概念、两个向量平行或共线及相等的几何意义;⑵掌握向量的加减法运算及数乘运算几何意义,了解向量线性运算的性质及其几何意义;⑶了解平面向量基本定理及其意义;⑷理解平面向量的数量积的含义,了解平面向量的数量积与向量投影的关系,能用数量积表示两向量的夹角,会用数量积判断两向量的垂直关系;⑸会用向量方法解决简单的平面几何问题和简单力学问题及其他一些实际问题. 题型一 平面向量加减法及数乘运算的几何意义应用例1 ⑴已知,,,O A M B 为平面上四点,且(1)OM OB OA λ=+-,(1,2)λ∈,则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O 、A 、M 、B 四点共线 ⑵在ABC 中,点D 在AB 上,CD 平分ACB ∠.若CB a =,CA b =,1a =,2b =,则CD =( ) A.1233a b + B.2133a b + C.3455a b + D.4355a b + 点拨:⑴考查了平面向量的加减法运算,利用数乘运算几何意义根据(1,2)λ∈来判断点M 的位置:⑵考查向量的基本运算和三角形的角平分线定理,关键在于确定点D 在AB 上的位置,由角平分线定理得出D 为AB 的三等分点,结合向量的基本运算求解; 解:⑴选B. 根据题意知()OM OB OA OA OB OA OA λλλ=+-=-+,则()OM OA OB OA λ-=-,即AM AB λ=.由(1,2)λ∈判断出点M在线段AB 的延长线上,即点B 在线段AM 上;⑵选B .因为CD 平分ACB ∠,由角平分线定理得21AD CA DB CB ==,所以D为AB 的三等分点,且22()33AD AB CB CA ==-,故21213333CD CA AD CB CA a b =+=+=+; 易错点:⑴没有根据(1,2)λ∈来判断点M 的位置;⑵同学对角平分线定理不熟悉,导致求解出错.变式与引申1已知ABC ∆和点M 满足0MA MB MC ++=,若存在实数m 使得AB AC mAM +=成立,则m =( )A .2B .3C .4D .5 2.设,,D E F 分别是ABC ∆的三边BC CA A B 、、上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直 题型二 平面向量基本定理及数量积的几何意义应用例2:⑴在正六边形ABCDEF 中,点P 是CDE ∆内(包括边界)的动点,若AP AB AF αβ=+(,)R αβ∈,则αβ+的取值范围是 ;⑵已知OA a =, OB b =,OC c =,OD d =,OE e =,设t R ∈,如果3a c =,2b d =,()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?点拨:⑴利用平面向量基本定理和向量加法的平行四边形法则,通过画图数形结合解出,或者用平面向量基本定理及线性规划的知识来解出;⑵向量个数较多,应选准一对作为基底,利用平面向量共线充要条件列出方程求解;解:⑴方法一,αβ+的取值范围是[]3,4.从特例试一试,当点P 与C 重合时(如图241--),AC 确定,过点C 作AB 和AF (即ED 和CD )的平行线得AGCF ,易知2α=,1β=,所以3αβ+=;同理点P 与E 重合时,也可以得3αβ+=;点P 与D 重合 时,2αβ==,所以4αβ+=.方法二,如图242--建立直角坐标系,设六边形的边长为2,各个顶点的坐标分 别是(1,3)A --、(1,3)B -、(2,0)C 、(1,3)D 、(1,3)E -、(2,0)F -, 令(,)P x y ,那么(1,3)AP x y =++,(2,0)AB =,(1,3)AF =-. 由AP AB AF αβ=+得12x αβ+=- ①,33y β+= ②,二者联立有21x αβ=--,33y β=-.因为点P 在CDE ∆内(包括边界),所以点P 必在直线DE 和CD 的下方,同时在直线CE 的上方,求出直线CD 和CE 的方程,根据线性规划知识得到点P 满足的约束条件是:33(2)3(2)y y x y x ⎧⎪≤⎪⎪≤--⎨⎪⎪≥--⎪⎩;把x y ,分别换成21,33)αββ---(得223αβαβ≤⎧⎪≤⎨⎪+≥⎩;作图验证可知,当点P 与C 重合时,2α=,1β=即3αβ+=;点P 与D 重合时,2αβ==,即4αβ+=.所以αβ+的取值范围是[]3,4; ⑵由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD =,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-,①若,a b 共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.所以综上所述,当,a b 共线时,则t 可为任意实数;当,a b 不共线时,65t =;易错点:⑴对平面向量基本定理概念不清晰,利用向量加法进行平行四边形法则作图不到G图241--AB CDE图242-- xCyFED A B oP位,判断,αβ的取值出错;⑵不能正确选准一对向量来作为基底去表示CE kCD =,没有对,a b 是否共线进行分类讨论;变式与引申3:⑴已知在平面直角坐标系中,(2,0)A -,(1,3)B ,O 为原点,且,βα+=(其中1,,αβαβ+=均为实数),若N (1,0),则||的最小值是 .4.已知OA =1,OB =3,OA OB ⋅=0,点C 在AOB ∠内,且AOC ∠=30°,设=OC mOA nOB + (,)m n R ∈,则nm等于( ) A.31B.3C.33D.3题型三 平面向量与平面几何综合的问题例3:⑴已知ABC ∆中,过重心G 的直线交AB 于P ,交边AC 于Q ,设APQ ∆的面积为1S ,ABC ∆的面积为2S ,AP pPB =,AQ qQC =,则①pq p q =+ ,②12SS 的取值范围是 ;⑵已知圆O 的半径为1,,PA PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ⋅的最小值为()A.4-+B.3- C.4-+D.3-+点拨:⑴令12,,,,,AB a AC b AP a AQ b PQ PG λλλ=====通过引入中间变量根据三角形的重心和平面向量的基本定理演算出p 和q 之间的关系式;⑵用APB ∠的三角函数形式表示出PA PB ⋅,再使用均值不等式得到答案;或者建立适当的坐标系,使用向量数量积的坐标运算形式求解. 解:⑴1pq p q =+;12S S 41[,).92∈设12,,,,AB a AC b AP a AQ b λλ====因为G 是△ABC 的重心,故1()3AG a b =+,又111()33PG AG AP a bλ=-=-+,21PQ AQ AP b a λλ=-=-,因为PG 与PQ 共线,所以PQ PG λ=,即11211[()]()033a b λλλλλ-++-=,又a 与b 不共线,所以111()3λλλ-=-及213λλ=,消去λ,得12123λλλλ+=;能重合,故12S S 41[,).92∈ ⑵选D.方法一:如图244--,令,0APB θθπ∠=<< cos PA PB PA PB θ⋅=2222222122tan 222(1sin )(12sin )cos ()cos (12sin )2sin sin θθθθθθθ--==-=, 令2sin ,012x x θ=<≤,(1)(12)123223x x PA PB x x x--⋅==+-≥;方法二:以圆心O 的坐标原点,以OP 为x 轴,建立坐标系:圆的方程为221x y +=, 设11(,)A x y ,11(,)B x y -,0(,0)P x ,22210110111001(,)(,)2PA PB x x y x x y x x x x y ⋅=-⋅--=-+-,由AO PA ⊥⇒11101(,)(,)0x y x x y ⋅-=2211011001x x x y x x ⇒-+=⇒=,所以有222110012PA PB x x x x y ⋅=-+-22222101102(1)23223x x x x x =-+--=+-≥.易错点:⑴没有正确引入中间变量使得p 和q 之间的关系式运算出错:⑵对PA PB ⋅的三角B 图244--PAO形式化简方向偏离正确结构或建立坐标系没有利用AO PA ⊥得出101x x =,难以继续演算.题型四 平面向量与圆锥曲线综合的问题例4:如图246--,已知双曲线C :22221x y a b -=(00)a b >>,,直线21a l x c=:与一条渐近线l 2交于点,M F 是双曲线C 的右焦点,O 为坐标原点.⑴ 证:OM MF ⊥;⑵若1MF =,且双曲线C 的离心率62e =,求双曲线C 的方程; ⑶在⑵的条件下,直线l 3过点(0,1)A 与双曲线右支交于不同的两点,P Q ,且P 在,A Q 之间,满足AP AQ λ=,试判断λ的范围,并用代数方法给出证明.【注】考虑课程标准和教材关于双曲线的准线方程不作要求,所以题目里给出的直线21a l x c=:实际上就是双曲线的右准线.点拨:⑴由题意写出点,M F 的坐标,判断0OM MF ⋅=即可; ⑵由离心率和1MF =建立关于,a b 方程组求解出,a b 的值;⑶由题意可初步猜想出01<<λ,用直线与圆锥曲线的位置关系来进一步推证.解:⑴因为21a l x c =:,渐近线2bl y x a=:;所以2()a ab M c c ,,又(,0)F c ,222c a b=+,得出2()a ab OM c c =,,22()()a ab b abMF c c c c c=--=-,,有222222a b a b OM MF c c⋅=-0=,所以OM MF ⊥.⑵因为62e =,所以2212b e a =-=,即222a b =;又1MF =,故422221b a b c c+=,2222()1b b a c +=,解得2212b a ==,, 即所求的双曲线C的方程为:x y 2221-= . ⑶由题意可得01<<λ.证明:设3l :1y kx =+,点1122()()P x y Q x y ,,, 由2222x y -=和1y kx =+联立消去y 得出方程:22(12)440k x kx ---=,因为3l 与双曲线C 右支交于不同的两点,P Q 得出不等式组:2221221221201616(12)040124012k k k k x x k x x k ⎧-≠⎪∆=+->⎪⎪⎨+=>-⎪⎪=->⎪-⎩;化简得222210120k k k k ⎧≠±⎪⎪⎪<⎨⎪<⎪⎪-<⎩;解得212k -<<-;又AP AQ λ=,有1122(1)(1)x y x y λ-=-,,成立, 12x x λ=;故224(1)12k x k λ+=-,222412x k λ=--,消2x 得2(1)λλ+= 22222164224(12)2121k k k k k ==+----;因为212k -<<-,有20211k <-<成立,得出2(1)4λλ+>,解得λ>0且1λ≠,根据题意知P 在,A Q 之间,所以λ的取值范围是(0,1).易错点:在第⑶问中字母的代数式运算出错,解得λ>0且1λ≠之后,不结合题意分析λ的取值范围.变式与引申7已知定点A (-1,0)和B (1,0),P 是圆22(3)(4)4x y -+-=上的一动点,则22PA PB +的最大值是 ;最小值是 .本节主要考查 ⑴知识点有平面向量的加减法、向量共线定理、平面向量的基本定理、向量的数量积的几何意义及运算,平面向量平行和垂直位置关系;⑵演绎推理能力、运算能力、创新意识;⑶数形结合思想、函数、不等式思想、分类讨论思想、化归转化思想和应用向量法分析解决问题.点评 ⑴认识向量的几何特性.对于向量问题一定要结合图形进行研究,掌握平面向量相关概念的几何意义,正确地运用向量的各种运算来处理向量与几何的综合应用问题(如例1、例2),要善于利用向量“数”与“形”两方面的特征;⑵理解向量数量积的定义、运算律、性质几何意义,并能灵活应用处理与向量的夹角、模长和垂直的相关问题;⑶平面向量能与中学数学内容的许多主干知识综合,形成知识交汇点,注意向量在知识的交汇点处命题,要关注平面向量与三角形等平面几何知识相结合的综合问题(如例3)及平面向量作为解析几何问题的已知条件与之交织在一起的综合问题(例4);⑷平面向量重视考查综合能力,体现了向量的工具性及学生分析问题、解决问题的能力,学生要善于运用向量方法解题,树立运用向量知识解题的意识;⑸知晓三角形五“心”向量形式的充要条件,设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 ①O 为ABC ∆的外心222OA OB OC ⇔==; ②O 为ABC ∆的重心0OA OB OC ⇔++=;③O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅; ④O 为ABC ∆的内心0aOA bOB cOC ⇔++=; ⑤O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+;习题2-4 1.已知非零向量AB 与AC 满足(||||AB ACAB AC +)·BC =0,且||||AB AC AB AC ⋅= 12, 则△ABC 为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形2. 设P 为ABC ∆内一点,且3145AP AB AC =+,则ABP ∆的面积与ABC ∆面积之比为 ( )A.14 B. 34 C. 15 D. 453.已知20a b =≠,关于x 的函数3211()32y x a x a b x =++⋅ 在R 上有极值,则a 与b夹角的范围是_ _____ _ .4.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
高中数学:三角函数与平面向量综合问题—6种类型全面解析
名师寄语
本讲要点小结与建议:
三角函数和平面向量的综合问题是近几年数学高考的一个新的视角.求解这类问题,既要求我们具有娴熟的三角函数的恒等变换技能,又要求我们熟练地进行平面向量的四种运算,特别是数乘运算和数量积运算.因此,在高三复习中,我们应当选择典型的综合性问题进行求解训练,提高我们处理这类综合问题的能力.
二、三角函数与平面向量综合问题—6种类型
题型一:结合向量的数量积,考查三角函数的化简或求值
题型二:结合向量的夹角公式,考查三角函数中的求角问题
题型三:结合三角形中的向量知识考查三角形的边长或角的运算
题型四:结合三角函数的有界性,考查三角函数的最值与向量运算
题型五:结合向量平移问题,考查三角函数解析式的求法
题型六:结合向量的坐标运算,考查与三角不等式相关的问题
【跟踪训练】
【参考答案】。
三角函数平面向量及解三角形的综合运用运用三角函数、平面向量和解三角形的综合运用时,常涉及到问题的空间几何解析、力学问题、电磁场问题等等。
本文将从求解平面三角形、力学问题和电磁场问题三个方面进行综合运用的详细说明。
1.求解平面三角形在平面三角形的解析中,我们经常会使用到三角函数的性质。
例如,已知三角形的两边和一个角,可以通过余弦定理求解出第三边的长。
另外,已知三个角或三个边中的一对和对应的一个角,我们可以利用正弦定理求解出其他的边和角。
举例说明:假设有一个平面三角形ABC,其中已知AB=3,AC=4,∠BAC=60°。
求解BC的长度和∠ABC、∠ACB的大小。
首先,我们可以利用余弦定理计算出BC的长度:BC² = AB² + AC² - 2·AB·AC·cos(∠BAC)BC² = 3² + 4² - 2·3·4·cos(60°)BC²=9+16-24·0.5BC²=25-12=13BC=√13接下来,利用正弦定理求解∠ABC和∠ACB的大小:sin(∠ABC) / AB = sin(∠BAC) / BCsin(∠ABC) / 3= sin(60°) / √13sin(∠ABC) = 3·sin(60°) / √13∠ABC = arcsin(3·sin(60°) / √13)sin(∠ACB) / AC = sin(∠BAC) / BCsin(∠ACB) / 4 = sin(60°) / √13sin(∠ABC) = 4·sin(60°) / √13∠ACB= arcsin(4·sin(60°) / √13)通过以上计算,我们可以得出BC≈3.605,∠ABC≈39.23°,∠ACB≈80.77°。
专题三 三角函数与平面向量的综合应用1. 三角恒等变换(1)公式:同角三角函数基本关系式、诱导公式、和差公式.(2)公式应用:注意公式的正用、逆用、变形使用的技巧,观察三角函数式中角之间的联系,式子之间以及式子和公式间的联系.(3)注意公式应用的条件、三角函数的符号、角的范围. 2. 三角函数的性质(1)研究三角函数的性质,一般要化为y =A sin(ωx +φ)的形式,其特征:一角、一次、一函数.(2)在讨论y =A sin(ωx +φ)的图象和性质时,要重视两种思想的应用:整体思想和数形结合思想,一般地,可设t =ωx +φ,y =A sin t ,通过研究这两个函数的图象、性质达到目的. 3. 解三角形解三角形问题主要有两种题型:一是与三角函数结合起来考查,通过三角变换化简,然后运用正、余弦定理求值;二是与平面向量结合(主要是数量积),判断三角形形状或结合正、余弦定理求值.试题一般为中档题,客观题、解答题均有可能出现. 4. 平面向量平面向量的线性运算,为证明两线平行提供了重要方法.平面向量数量积的运算解决了两向量的夹角、垂直等问题.特别是平面向量的坐标运算与三角函数的有机结合,体现了向量应用的广泛性.1. 已知角α终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.答案 -34解析cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin (9π2+α)=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义得tan α=y x =-34.所以cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α=-34.2. 已知f (x )=sin(x +θ)+3cos(x +θ)的一条对称轴为y 轴,且θ∈(0,π),则θ=________.答案 π6解析 f (x )=sin(x +θ)+3cos(x +θ)=2sin ⎝⎛⎭⎫x +θ+π3,由θ+π3=k π+π2 (k ∈Z )及θ∈(0,π),可得θ=π6.3. 如图所示的是函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|∈⎝⎛⎭⎫0,π2)图象 的一部分,则f (x )的解析式为____________. 答案 f (x )=2sin ⎝⎛⎭⎫23x +π6+1解析 由于最大值和最小值之差等于4,故A =2,B =1. 由于2=2sin φ+1,且|φ|∈⎝⎛⎭⎫0,π2,得φ=π6. 由图象知ω(-π)+φ=2k π-π2 (k ∈Z ),得ω=-2k +23(k ∈Z ).又2πω>2π,∴0<ω<1.∴ω=23.∴函数f (x )的解析式是f (x )=2sin ⎝⎛⎭⎫23x +π6+1.4. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25.而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5.在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π, ∴sin ∠CED =1-cos 2∠CED=1-⎝⎛⎭⎫310102=1010.5. 如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB=3,P 是BC 上的一个动点,当PD →·P A →取得最小值时,tan ∠DP A 的 值为________. 答案1235解析 如图,以A 为原点,建立平面直角坐标系xAy ,则A (0,0), B (3,0),C (3,2),D (0,1),设∠CPD =α,∠BP A =β, P (3,y ) (0≤y ≤2).∴PD →=(-3,1-y ),P A →=(-3,-y ), ∴PD →·P A →=y 2-y +9=⎝⎛⎭⎫y -122+354, ∴当y =12时,PD →·P A →取得最小值,此时P ⎝⎛⎭⎫3,12, 易知|DP →|=|AP →|,α=β. 在△ABP 中,tan β=312=6,tan ∠DP A =-tan(α+β)=2tan βtan 2β-1=1235.题型一 三角恒等变换例1 设π3<α<3π4,sin ⎝⎛⎭⎫α-π4=35,求sin α-cos 2α+1tan α的值. 思维启迪:可以先将所求式子化简,寻求和已知条件的联系. 解 方法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝⎛⎭⎫α-π4=35, 所以cos ⎝⎛⎭⎫α-π4=45. 所以cos α=cos[(α-π4)+π4]=cos ⎝⎛⎭⎫α-π4cos π4-sin ⎝⎛⎭⎫α-π4sin π4=210, 所以sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.方法二 由sin ⎝⎛⎭⎫α-π4=35,得sin α-cos α=325, 两边平方,得1-2sin αcos α=1825,即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.因为(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,解得sin α=7210,cos α=210.下同方法一.探究提高 三角变换的关键是寻求已知和所求式子间的联系,要先进行化简,角的转化是三角变换的“灵魂”.要注意角的范围对式子变形的影响.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235B.235 C .-45D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 题型二 三角函数的图象与性质例2 (2011·浙江)已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点, 点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.思维启迪:三角函数图象的确定,可以利用图象的周期性、最值、已知点的坐标列方程来解决.解 (1)由题意得T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图象上,所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ).由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).连接PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A ·9+A 2=-12,解得A 2=3.又A >0,所以A= 3.探究提高 本题确定φ的值时,一定要考虑φ的范围;在三角形中利用余弦定理求A 是本题的难点.已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎡⎦⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由. 解 (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π,又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2 (k ∈Z ),φ=2k π+π6 (k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6. 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫πx +π6. (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2 (k ∈Z ),解得x =k +13,由214≤k +13≤234,解得5912≤k ≤6512,又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f (x )的对称轴,其方程为x =163. 题型三 三角函数、平面向量、解三角形的综合应用 例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪:(1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12. cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 探究提高 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且lg a -lg b =lg cos B -lg cos A ≠0.(1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(n -m )=14,求a ,b ,c 的值.解 (1)因为lg a -lg b =lg cos B -lg cos A ≠0, 所以a b =cos B cos A ≠1,所以sin 2A =sin 2B 且a ≠b .因为A ,B ∈(0,π)且A ≠B ,所以2A =π-2B ,即A +B =π2且A ≠B .所以△ABC 是非等腰的直角三角形. (2)由m ⊥n ,得m·n =0.所以2a 2-3b 2=0.① 由(m +n )·(n -m )=14,得n 2-m 2=14, 所以a 2+9b 2-4a 2-b 2=14,即-3a 2+8b 2=14.② 联立①②,解得a =6,b =2.所以c =a 2+b 2=10.故所求的a ,b ,c 的值分别为6,2,10.高考中的平面向量、三角函数客观题典例1:(5分)(2012·山东)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3考点分析 本题考查三角函数的性质,考查整体思想和数形结合思想. 解题策略 根据整体思想,找出角π6x -π3的范围,再根据图象求函数的最值.解析 由题意-π3≤πx 6-π3≤7π6.画出y =2sin x 的图象如图,知, 当π6x -π3=-π3时,y min =- 3. 当π6x -π3=π2时,y max =2. 故y max +y min =2- 3. 答案 A解后反思 (1)函数y =A sin(ωx +φ)可看作由函数y =A sin t 和t =ωx +φ构成的复合函数.(2)复合函数的值域即为外层函数的值域,可以通过图象观察得到.典例2:(5分)(2012·天津)在△ABC 中,∠A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D .2考点分析 本题考查向量的线性运算,考查向量的数量积和运算求解能力.解题策略 根据平面向量基本定理,将题中的向量BQ →,CP →分别用向量AB →,AC →表示出来,再进行数量积计算.解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →, CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23.答案 B解后反思 (1)利用平面向量基本定理结合向量的线性运算表示向量是向量问题求解的基础;(2)本题在求解过程中利用了方程思想.方法与技巧1.研究三角函数的图象、性质一定要化成y =A sin(ωx +φ)+B 的形式,然后利用数形结合思想求解.2.三角函数与向量的综合问题,一般情况下向量知识作为一个载体,可以先通过计算转化为三角函数问题再进行求解. 失误与防范1.三角函数式的变换要熟练公式,注意角的范围.2.向量计算时要注意向量夹角的大小,不要混同于直线的夹角或三角形的内角.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·大纲全国)△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →等于( )A.13a -13b B.23a -23b C.35a -35bD.45a -45b 答案 D解析 利用向量的三角形法则求解.如图,∵a ·b =0,∴a ⊥b , ∴∠ACB =90°, ∴AB =AC 2+BC 2= 5.又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455.∴AD →=45AB →=45(a -b )=45a -45b .2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2B .πC .2πD .4π答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为 ( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3答案 C解析 由m ⊥n 得m·n =0,即3cos A -sin A =0,即2cos ⎝⎛⎭⎫A +π6=0, ∵π6<A +π6<7π6,∴A +π6=π2,即A =π3. 又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c =c sin C , 所以sin C =1,C =π2,所以B =π-π3-π2=π6.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以 点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相 切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D. 二、填空题(每小题5分,共15分)5. (2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案 π2解析 利用正弦定理及三角形内角和性质求解. 在△ABC 中,由正弦定理可知a sin A =b sin B, 即sin B =b sin Aa=3×323=12. 又∵a >b ,∴∠B =π6.∴∠C =π-∠A -∠B =π2.6. 在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若AB →⊥OC →,则x 的值为______.答案 π2或π3解析 因为AB →=(2cos x +1,-2cos 2x -2),OC →=(cos x,1), 所以AB →·OC →=(2cos x +1)cos x +(-2cos 2x -2)·1 =-2cos 2x +cos x =0,可得cos x =0或cos x =12,所以x 的值为π2或π3.7. 已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2xcos 2x -sin 2x=________. 答案 -195解析 由题意知,f ′(x )=cos x +sin x ,由f ′(x )=2f (x ), 得cos x +sin x =2(sin x -cos x ),得tan x =3, 所以1+sin 2xcos 2x -sin 2x =1+sin 2xcos 2x -2sin x cos x=2sin 2x +cos 2x cos 2x -2sin x cos x =2tan 2x +11-2tan x =-195.三、解答题(共22分)8. (10分)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2.(1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求2sin 2α+sin 2α1+tan α的值.解 (1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3), ∴AC →2=(cos α-3)2+sin 2α=10-6cos α, BC →2=cos 2α+(sin α-3)2=10-6sin α, 由|AC →|=|BC →|,可得AC →2=BC →2,即10-6cos α=10-6sin α,得sin α=cos α. 又α∈⎝⎛⎭⎫π2,3π2,∴α=5π4.(2)由AC →·BC →=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23.①又2sin 2α+sin 2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α.由①式两边分别平方,得1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin 2α+sin 2α1+tan α=-59.9. (12分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. 解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6.(2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2,故0<5π6-A <π2,解得π3<A <5π6,又0<A <π2,所以π3<A <π2.故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解. 由题意知f (x )=sin 2⎝⎛⎭⎫x +π4 =1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2,令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 2. 已知a =⎝⎛⎭⎫-12,32,b =(1,3),则|a +t b | (t ∈R )的最小值等于( )A .1 B.32C.12D.22答案 B解析 方法一 a +t b =⎝⎛⎭⎫-12+t ,32+3t ,∴|a +t b |2=⎝⎛⎭⎫-12+t 2+⎝⎛⎭⎫32+3t 2 =4t 2+2t +1=4⎝⎛⎭⎫t +142+34,∴当t =-14时,|a +t b |2取得最小值34,即|a +t b |取得最小值32. 方法二 如图所示,OA →=a ,OB →=b ,在OB 上任取一点T ,使得OT →=-t b (t <0),则|a +t b |=|TA →|,显然,当AT ⊥OB 时,取最小值. 由TA →·OB →=(a +t b )·b =a·b +t b 2=0,得t =-14,∴当t =-14时,|a +t b |取得最小值32.3. 在△ABC 中,AB →·BC →=3,△ABC 的面积S △ABC ∈⎣⎡⎦⎤32,32,则AB →与BC →夹角的取值范围是( )A.⎣⎡⎦⎤π4,π3B.⎣⎡⎦⎤π6,π4 C.⎣⎡⎦⎤π6,π3D.⎣⎡⎦⎤π3,π2答案 B解析 记AB →与BC →的夹角为θ,AB →·BC →=|AB →|·|BC →|·cos θ=3,|AB →|·|BC →|=3cos θ,S △ABC =12|AB→|·|BC →|·sin(π-θ)=12|AB →|·|BC →|sin θ=32tan θ,由题意得tan θ∈⎣⎡⎦⎤33,1,所以θ∈⎣⎡⎦⎤π6,π4,正确答案为B.二、填空题(每小题5分,共15分)4. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是__________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) 解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f (x )取最值,∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1, ∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝⎛⎭⎫π2>f (π),∴sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ). 5.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13, cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=________. 答案593 解析 ∵0<α<π2,∴sin ⎝⎛⎭⎫π4+α=232, ∵-π2<β<0,∴sin ⎝⎛⎭⎫π4-β2=63, 则cos ⎝⎛⎭⎫α+β2=cos[⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2] =13×33+232×63=593.6. (2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向 滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________. 答案 (2-sin 2,1-cos 2)解析 利用平面向量的坐标定义、解三角形知识以及数形结合思想求解.设A (2,0),B (2,1),由题意知劣弧P A 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎫2-π2 =2-sin 2,y =1+1×sin ⎝⎛⎭⎫2-π2=1-cos 2, ∴OP →的坐标为(2-sin 2,1-cos 2). 三、解答题7. (13分)已知f (x )=log a ⎝⎛⎭⎫sin 2x 2-sin 4x2(a >0且a ≠1),试讨论函数的奇偶性、单调性. 解 f (x )=log a ⎣⎡⎦⎤sin 2x 2⎝⎛⎭⎫1-sin 2x 2 =log a 1-cos 2x8.故定义域为cos 2x ≠1,即{x |x ≠k π,k ∈Z },关于原点对称且满足f (-x )=f (x ),所以此函数是偶函数. 令t =18(1-cos 2x ),则t 的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ); 递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 所以,当a >1时,f (x )的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z );递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 当0<a <1时,f (x )的递增区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z );递减区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ).。
1 / 7平面向量与代数的综合应用为每年高考必考内容,以选择题(填空题)形式出现,或作为题设条件与三角函数(解三角形)、数列、函数不等式形成综合解答题的形式出现,分值在4~12分左右;向量具有代数形式与几何形式的“双重身份”,这使它成为中学数学知识的一个交汇点,也成为多项内容的媒介,在高考中主要考查有关的基础知识,突出向量的工具作用,难度系数在0.4~0.8之间.考试要求 ⑴理解平面向量的概念,理解两个向量相等及向量共线的含义;⑵掌握向量的加法、减法及数乘运算;⑶了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示,理解用坐标表示向量的加法和减法运算及数乘运算,理解用坐标表示的平面向量共线的条件;⑷理解平面向量的数量积的含义及其物理意义,掌握数量积的坐标表达式并会进行数量积的运算,能用数量积表示两向量的夹角,会用数量积判断两向量的垂直关系. 题型一 平面向量的有关概念及应用例1定义平面向量之间的一种运算“ ”如下,对任意的=(m,n)a ,(p,q)b =,令a b =mq np -,下面说法错误的是( )(A )若a 与b 共线,则a 0b = (B )a b =b a(C )对任意的R λ∈,有()a λ (b a λ=)b (D )(a 2222)()||||b a b a b +⋅=点拨:仿照平面向量的线性运算规则及数量积的性质进行“ ”运算.解:若a 与b 共线,则有a b =mq np=0-,故A 正确;因为b a=pn qm -, 而a b =mq np -,所以有a b ≠b a,故选项B 错误,选B.易错点:把定义的运算“a b =mq np -”混同与“a b⇔mq np=0-”,认同选项B 正确.变式与引申1:已知两个非零向量,m n ,定义运算“#”:#||||sin m n m n θ=⋅,其中θ为,m n 的夹角.有两两不共线的三个向量,,a b c,下列结论:①若##a b a c = ,则b c = ;②##a b b a = ;③若#0a b = ;则a b ;④()###a b c a c b c +=+ ;⑤#()#a b a b =-.其中正确的个数有( )A .1个B .2个C .3个D .4个题型二 平面向量与三角函数的综合应用例2:已知向量(sin ,1)a x =- ,3(cos ,)2b x = .(1)当a b 时,求2cos 3sin 2x x -的值;(2)求()()f x a b b =+⋅ 的最小正周期和单调递增区间.点拨:(1)由向量平行列方程解出tan x 的值,所求式子转化成正切单角名称的三角代数式,代入可求解;(2)进行向量坐标形式的数量积运算得到()f x 的解析式,转化为sin()y A x b ωϕ=++函数结构.解:(1)由a b 得3sin cos 02x x +=,即tan x 2=3-,所以2cos 3sin 2x x -222cos 6sin cos sin cos x x x x x-=+216tan 1tan x x -=+4513=. (2) 因为(sin ,1)a x =- ,3(cos ,)2b x = ;所以a b + =1(sin cos ,)2x x +;()()f x a b b =+⋅3(sin cos )cos 4x x x =++15(sin2cos2)24x x =++5)244x π=++;所以最小正周期为π;由222242k x k πππππ-++<<得388k x k ππππ-+<<,故单调递增区间为 3(,)88k k ππππ-+(k Z ∈).易错点:计算tan x 的值出错;()f x 转化为sin()y A x b ωϕ=++形式出错;下结论时遗漏k Z ∈.变式与引申2:已知向量(sin ,1)a θ= ,(1,cos )b θ=,0.θπ<<(1)若a b ⊥,求θ. (2)求a b + 的最大值.题型三 平面向量与数列的综合应用解:(1)因为点(,) ()n n B n b n N +∈都在斜率为6的同一条直线上,所以1=6(1)n nb b n n+-+-,即16n n b b +-=于是数列{}n b 是等差数列,故126(1)66n b n n =+-=+;因为11(1,)n n n n A A a a ++=- ,(1,)n n n B C b =--;又因为n n 1n n A A B C +与共线,所以11()(1)()0,n n n b a a +⨯----= 即1n n n a a b +-=,当n≥2时,121321()()()n n n a a a a a a a a -=+-+-++- (11231)n a b b b b -=+++++…11(1)3(1)(2)a b n n n =+-+--3(1)n n =+ ,当n=1时,上式也成立, 所以n a 3(1)n n =+.高(2)1111()31n a n n =-+, 111111(1)32231n T n n =-+-++-+ 1113133nn n ⎛⎫=-= ⎪++⎝⎭. 易错点:错误理解点(,) ()n n B n b n N +∈都在斜率为6的同一条直线上的含义,无法求得n b 的通项公式;由1n n A A + 与n n B C共线错列方程11()(1)()0,n n n b a a +⨯-+--=得到结果1n n n a a b +-=-.变式与引申3:数列{}n a 中1=1a ,513a =,21n n n a a a +++=2,数列{}n b 中,26b =,33b =,212n n n b ++=b b 在直角坐标平面内,已知点列111222333()()()()n n n P a b P a b P a b P a b ⋯⋯,,,,,,,,,则向量12PP +34P P +…+20112012P P 的坐标为( ).A.100512(3015,8[()1])- B.100612(3018,8[()1])- C.201012(3015,8[()1])- D.201212(3018,8[()1])-3 / 7题型四 平面向量与函数的综合应用解:(1)方法一:由题意知x =(232t +,223232--t ), y =1(,)22t k +,又x y ⊥ 高故x y ⋅=×(12t -)+223232--t×(k +)=0,整理得:3340t t k --=,即31344k t t =-. 中学方法二:因为a = (3,-1),b = (21, 23),所以a =2,b =1且a b ⊥ ,又x y ⊥ 故x y ⋅ =0.即222(3)0k a t t b = -+-,化简得3340t t k --=, 所以31344k t t =-.(2) 由(1)知:()k f t =31344t t =-,求导()k f t ''==23344t -,令k '<0得-1<t <1;令k '>0得t <-1或t >1. 故()k f t =的单调递减区间是(-1, 1 ),单调递增区间是(-∞,-1)和(1,+∞). 易错点:字母运算出错不能正确得到,x y 的坐标形式;没能通过简单的心算判断出0a b ⋅= ,使得x y ⋅的展开式中无法消去含有a b ⋅的项.变式与引申4:1.已知平面向量a =(3,-1),b =(21,23),若存在不为零的实数k 和角α,使向量c =a +(sin 3α-)b ,d =k -a +sin α⋅b,且c ⊥d,试求实数k 的取值范围;2.(2010山东德州模拟)已知两个向量)log ,log 1(22x x a +=,),(log 2t x b = )0(≠x . (1)若1t =且⊥,求实数x 的值; (2)对t R ∈写出函数b a x f ⋅=)(具备的性质.本节主要考查(1)知识点有平面向量的有关概念、加减法的几何意义、向量共线定理、平面向量的基本定理、坐标表示、垂直关系、向量的数量积;(2)演绎推理能力、运算能力、创新意识;(3)函数与方程的思想、数形结合思想和待定系数法.点评(1)掌握平面向量的基础知识,正确地进行向量的各种运算来处理向量与代数的综合应用问题(如例1),要善于利用向量“数”与“形”两方面的特征;(2)向量共线的充要条件中应注意只有非零向量才能表示与之共线的其他向量,向量共线的坐标表示不能与向量垂直的坐标表示相混淆;(3)理解向量的数量积的定义、运算律、性质并能灵活应用,向量的数量积的结果是实数而不是向量,注意数量积与实数乘法运算律的差异;(4)向量的坐标运算使得向量运算完全代数化,向量与函数、数列、解三角形、不等式等相结合形成了代数的综合问题(如例2、例3、例4),在知识的交汇点处命题来考查了向量的工具性及学生分析问题、解决问题的能力.习题2—31. (2011年湖南理数)在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则________AD BE ⋅=.2. 关于平面向量有下列四个命题:①若⋅=⋅a b a c ,则=b c ; ②已知(,3),(2,6)k ==-a b .若a b ∥,则1k =-;③非零向量a 和b ,满足||=|a |=|b |a -b ,则a 与a +b 的夹角为30 ;④()()0||||||||+⋅-=a b a b a b a b .其中正确的命题为___________.(写出所有正确命题的序号) 3.已知向量21(,1),(,)1a mxb x mx =-=- (m 是常数), (1)若1()f x a b=⋅ 是奇函数,求m 的值; 中学(2)若向量,a b 的夹角,a b <> 为[0,)2π中的值,求实数x 的取值范围.4.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值.5.(2010郑州四中模拟)已知点集{(,)}L x y y m n ==,其中(21,1),(1,2)m x n =-=,点列),(n n n b a P 在L 中,1P 为L 与y 轴的公共点,等差数列}{n a 的公差为1; (1)求数列}{n a ,}{n b 的通项公式;(2)若1),251=≥=c n c n ,数列}{n c 的前n 项和n S 满足n S n M n 62≥+对任意的*n N ∈都成立,试求M 的取值范围.【答案】变式与引申1:解:② ;因为①a b a c ⋅=⋅ 时,()0a b c ⋅-= 所以()a b c ⊥-不一定有b c = ,知①错;②(1,)a k =,(2,6)b =- ,a b 知,16(2)0k ⨯--=,3k =-,故②正确;③非零向量a ,b 满足a b a b ==- ,则三向量a 、b 、a b - 构成正三角形,由向量加法的平行四边形法则知,a b + 平分BAC ∠,a b + 与a的夹角为30°,③错.5 / 7变式与引申2:解:(1)若a b ⊥ ,则sin cos 0x x +=,由此得tan 1x =-,因为0.θπ<<,所以θ=34π-;(2)由(sin ,1)a θ= ,(1,cos )b θ= 得(sin 1,1cos )a b θθ+=++;a b +=,当sin()4πθ+=1时,a b + 取得最大值为2+1,此时4πθ=.变式与引申3:解:选D. 依题意得{}n a 成等差数列,由5141413a a d d =+=+=得3d =;{}n b 成等比数列,由323162b b ==q=;122121()PP a a b b =-,-,344343()PP a a b b = -,-,56P P 6565()a a b b =-,-…,20112012P P 2012201120122011()a a b b =-,-.因为13n n a a d +-==,11(1)2n n n n b b b q b +=-=--;故12PP +34P P +…+20112012P P 135201111006,()2d b b b b ⎛⎫=-+++⋯+ ⎪⎝⎭=201212(3018,8[()1])-. 变式与引申4:⑴仿解法二知k 2139sin 4216α=--(),而1sin 1α-≤≤, 所以当sin 1α=-时,k 取最大值1;当sin 1α=时,k 取最小值-21.又k ≠0 故k 的取值范围为 1[,0)(0,1]2- .将例题中的t 略加改动,旧题新掘,出现了意想不到的效果,很好地考查了向量与三角函数综合运用能力. ⑵解:①由已知得0log 2log 222=+x x , 2log 0x =或2log 2x =-解得1±=x ,或41±=x ②x t x x f 222log )1(log )(++=具备的性质: (ⅰ)偶函数;(ⅱ)当21log 2tx +-=即212t x +-±=时,)(x f 取得最小值4)1(2t +-(写出值域为)4)1[2∞++-,(t 也可);(ⅲ)单调性:在]2,0(21t+-上递减,12[2,)t+-+∞上递增;由对称性,在)0,2[21t +--上递增,在]2,(21t+---∞递减 .习题2—3③中易知,a b 夹角60 ,a 与a +b 的夹角为30 ;④中()()||||||||+⋅-a b a b a b a b ()()||||||||=+⋅-a b a b a b a b 22||||=-a ba b ||||+⋅a b a b ||||-⋅a b a b 0=.3.解: (1)由题知a b ⋅ =211mx xx mx mx -=--,所以1()mx f x x -==1m x -,由题知对任意的不为零的实数x , 都有()()f x f x -=-,即1m x +=1m x-+恒成立,所以0m =.(2)由题知a b ⋅ >0,所以1xmx ->0,即(1)0x mx ->,①当0m =时,0x <;②当0m >时,1()0x x m ->;所以0x <或1x m >;③当0m <时,1()0x x m-<,所以10x m <<.综上, 当0m =时,实数x 的取值范围是0x <;当0m >时, 实数x 的取值范围是0x <或1x m>;当0m <时, 实数x 的取值范围是10x m<<.4.解:(1)方法一:由题设知(3,5),(1,1)AB AC ==-,则(2,6),(4,4).AB AC AB AC +=-=所以|||AB AC AB AC +=-=故所求的两条对角线的长分别为。