高考专题突破 高考中的三角函数与平面向量问题
- 格式:pptx
- 大小:4.07 MB
- 文档页数:39
高考专题突破二 高考中的三角函数与平面向量问题考点一·平面向量 一、基础知识要记牢在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量. 二、经典例题领悟好例1 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ), 则λμ=________.方法技巧平面向量的线性运算包括向量的加法、向量的减法及实数与向量的积,在解决这类问题时,经常出现的错误有:1.忽视向量的起点与终点,导致加法与减法混淆;2.错用数乘公式. 对此,要注意两点:1.运用平行四边形法则时两个向量的起点必须重合;2.运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件. 三、预测押题不能少1.(1)已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 (2)如图,在△ABC 中,设AB =a ,AC =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP 等于( )A.12a +12bB.13a +23bC.27a +47bD.47a +27b 考点二·平面向量的数量积 一、基础知识要记牢(1)两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值确定.(2)求非零向量a ,b 的夹角一般利用公式cos 〈a ,b 〉=a·b|a ||b |先求出夹角的余弦值, 然后求夹角.(3)向量a 在向量b 方向上的投影为a·b|b |=|a |cos θ.二、经典例题领悟好例2 (1)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB 在CD 方向上的投影为( ) A.322B.3152C .-322D .-3152(2)在平行四边形ABCD 中, AD =1,∠BAD =60°,E 为CD 的中点.若AC ·BE =1, 则AB 的长为________. 方法技巧求平面向量的数量积的方法有两个:(1)定义法:a ·b =|a ||b |·cos θ,其中θ为向量a ,b 的夹角; (2)坐标法:当a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 三、预测押题不能少2.(1)已知向量a ,b ,满足|a |=3,|b |=23,且a ⊥(a +b ),则a 与b 的夹角为( ) A.π2 B.2π3C.3π4D.5π6(2)已知点G 为△ABC 的重心,∠A =120°,AB ·AC =-2,则|AG |的最小值是( ) A.33B.22C.23D.34交汇·创新考点盘点平面向量是高中数学的基础工具之一,它具有代数形式与几何形式的“双重型”,考查时经常与三角函数、解析几何、线性规划问题等知识交汇命题. 角度一·平面向量与线性规划问题的交汇 一、经典例题领悟好例1 已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB +μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.学审题——审条件之审视隐含设P 点坐标―→AP 、AB 、AC 坐标――――――――――――→AP =λAB +μAC关于λ,μ,x ,y 方程组―→求出λ,μ―→关于x ,y 不等组―→作出可行域―→D 的面积.方法技巧本题由AP =λAB +μAC 把平面向量转化为线性规划问题,求解的易误点是由⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1求x ,y 的范围然后计算面积时,出现面积变大,错误的原因是多次运用不等式的运算性质时,不等式之间出现了不等价变形.本题采用线性规划知识求解. 二、预测押题不能少1.已知O 为坐标原点,A 点的坐标为(1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA ·OP 的最大值为( ) A .-2 B .-1 C .1D .2角度二·平面向量与三角函数的交汇 一、经典例题领悟好例2 已知O 为坐标原点,对于函数f (x )=a sin x +b cos x ,称向量OM =(a ,b )为函数f (x )的伴随向量,同时称函数f (x )为向量OM 的伴随函数.(1)设函数g (x )=sin(π2+x )+2cos(π2-x ),试求g (x )的伴随向量OM 的模;(2)记ON =(1,3)的伴随函数为h (x ),求使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围.方法技巧解决平面向量与三角函数结合的题目,首先要根据向量的运算性质将向量问题转化为三角函数,然后利用三角公式进行恒等变换,转化为题目中所要求的问题.而本题求解需要在理解新定义的基础上把问题转化为常规类型,运用三角函数的诱导公式、两角和与差的三角函数公式进行化简运算,同时也伴随着平面向量的坐标运算. 二、预测押题不能少2.设a =(cos α,(λ-1)sin α),b =(cos β,sin β) >0,0<<<2λαβπ⎛⎫⎪⎝⎭是平面上的两个向量,若向量a +b 与a -b 互相垂直. (1)求实数λ的值;(2)若a ·b =45,且tan β=43,求tan α的值.角度三·新定义下平面向量的创新问题近年,高考以新定义的形式考查向量的概念、线性运算、数量积运算的频率较大,其形式体现了“新”.解决此类问题,首先需要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,通过转化思想解决,这是破解新定义信息题难点的关键所在. 一、经典例题领悟好例3 对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈⎝⎛⎭⎫π4,π2,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫⎪⎪n 2n ∈Z 中,则a ∘b =( ) A.52 B.32 C .1 D.12方法技巧本题把向量的数量积、夹角、不等式和集合等问题通过新定义有机结合在一起.解答本题的关键是明确a ∘b 与b ∘a 在集合Z 2n n ⎧⎫∈⎨⎬⎩⎭中的实际意义是|a ||b |cos θ与|b ||a |cos θ都能表示成n2(n ∈Z )的形式. 二、预测押题不能少3.在平面斜坐标系xOy 中,∠xOy =45°,点P 的斜坐标定义为“若OP =x 0e 1+y 0e 2(其中e 1,e 2分别为与斜坐标系的x 轴,y 轴同方向的单位向量),则点P 的坐标为(x 0,y 0)”. 若F 1(-1,0),F 2(1,0),且动点M (x ,y )满足|1MF |=|2MF |,则点M 在斜坐标系中的轨迹方程为( ) A .x -2y =0 B .x +2y =0 C.2x -y =0 D.2x +y =0参考答案考点一·平面向量 二、经典例题领悟好 例1 4【解析】以向量a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴 建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2), c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.三、预测押题不能少 1.(1)A【解析】由已知, 得AB =(3,-4),所以|AB |=5, 因此与AB 同方向的单位向量是15AB =⎝⎛⎭⎫35,-45. (2)C【解析】选C 如图,连接BP , 则AP =AC +CP =b +PR ,①AP =AB +BP =a +RP -RB ,②①+②,得2AP =a +b -RB .③ 又RB =12QB =12(AB -AQ )=12⎝⎛⎭⎫a -12 AP ,④ 将④代入③,得2AP =a +b -12⎝⎛⎭⎫a -12 AP , 解得AP =27a +47b .考点二·平面向量的数量积 二、经典例题领悟好 例2 (1)A (2)12【解析】 (1)由已知得AB =(2,1),CD =(5,5),因此AB 在CD 方向上的投影为AB ·CD |CD |=1552=322.(2)设AB 的长为a (a >0),又因为AC =AB +AD ,BE =BC +CE =AD -12AB ,于是AC ·BE =(AB +AD )·⎝⎛⎭⎫AD -12 AB =12AB ·AD -12AB 2+AD 2 =-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.三、预测押题不能少 2.(1)D【解析】a ⊥(a +b )⇒a ·(a +b )=a 2+a ·b =|a |2+|a ||b |cos 〈a ,b 〉=0, 故cos 〈a ,b 〉=-963=-32,故所求夹角为5π6.(2)C【解析】设BC 的中点为M ,则AG =23AM .又M 为BC 中点,∴AM =12(AB +AC ),∴AG =23AM =13(AB +AC ),∴|AG |=13AB 2+AC 2+2AB ·AC=13AB 2+AC 2-4.又∵AB ·AC =-2,∠A =120°, ∴|AB ||AC |=4. ∵|AG |=13AB 2+AC 2-4≥132|AB ||AC |-4=23,当且仅当|AB |=|AC |时取等号, ∴|AG |的最小值为23.交汇·创新考点盘点一、经典例题领悟好 例1 3【解析】设P (x ,y ),则AP =(x -1,y +1).由题意知AB =(2,1),AC =(1,2).由AP =λAB +μAC知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎨⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0与x -2y -3=0之间的距离为d =35,故平面区域D 的面积为S =5×35=3.二、预测押题不能少 1.D【解析】 如图作可行域,z =OA ·OP =x +2y ,显然在B (0,1)处z max =2.故选D.角度二·平面向量与三角函数的交汇 一、经典例题领悟好例2 解 (1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM =(2,1),∴|OM |=22+12= 5.(2)由已知可得h (x )=sin x + 3 cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).二、预测押题不能少2. 解:(1)由题设,可得(a +b )·(a -b )=0,代入a ,b 的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0, 所以(λ-1)2sin 2α-sin 2α=0. 因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0). 故λ=2.(2)由(1)及题设条件,知a ·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α-β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=-34+431-⎝⎛⎭⎫-34×43=724.所以tan α=724.角度三·新定义下平面向量的创新问题 一、经典例题领悟好 例3 D【解析】 a ∘b =a ·b b 2=|a ||b ||b |2cos θ=|a ||b |cos θ,b ∘a =|b ||a |·cos θ,因为|a |>0,|b |>0,0<cos θ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2n ∈Z ,所以|a ||b |cos θ=n 2,|b ||a |cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n4=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得到0<m ·n <2, 故m =n =1,即a ∘b =12.二、预测押题不能少 3.D【解析】依题意,1MF =(-1-x ,-y )=(-1-x )e 1-y e 2,2MF =(1-x ,-y )=(1-x )e 1-y e 2,由|1MF |=|2MF |,得1MF 2=2MF 2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0. ∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,。
三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。
【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
2022年高考数学之平面向量专题突破专题十平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0.(3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r .②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b cr +-.(4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一三角形四心的判断【例题选讲】[例1](1)已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过()A .△ABC 的内心B .△ABC 的垂心C .△ABC 的重心D .AB 边的中点答案C解析取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案内心解析由条件,得OP→-OA →=AP →=,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的()A .垂心B .内心C .外心D .重心答案C解析设BC 边中点为D ,∵AC →2-AB →2=2AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的()A .重心B .垂心C .外心D .内心答案B 解析因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C )=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0 ,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0 ,④OA OB OC ++=0则点O 分别为ABC ∆的()A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案D(6)下列叙述正确的是________.①1()3PG PA PB PC G =++⇔为ABC ∆的重心.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案①②解析①G为ABC∆的重心⇔GA GB GC ++=0 ⇔PA PG PB PG PC PG -+-+-=0 ⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅ ⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥ PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0 ⇔||||()AB PC BC PC CA ++ ||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0 . ||||||||BC CA CA CB = ,∴||BC CA ||CA CB + 与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅= (OB222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔ 为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的()A .内心B .外心C .重心D .垂心3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的()A .垂心B .外心C .内心D .重心5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的()A .垂心B .外心C .内心D .重心6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的()A .重心B .外心C .内心D .垂心7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PCb⋅=⋅ +22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的()A .重心B .外心C .内心D .垂心8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的().A .重点B .外心C .内心D .垂心9.P 是△ABC 所在平面内一点,若PA →·PB →=PB →·PC →=PC →·PA →,则P 是△ABC 的()A .外心B .内心C .重心D .垂心10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的()A .外心B .内心C .重心D .垂心11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+,则点(O )A .在AB 边的高所在的直线上B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+ ,则O 点的轨迹一定通过ABC ∆的()A .外心B .内心C .重心D .垂心13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅= PB PC⋅ =PA PC ⋅,则O ,N ,P 分别是ABC ∆的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足(0)||||AB ACOP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中;③动点P 满足(0)||sin ||sin AB ACOP OA AB B AC C λλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB ACOP AB B AC Cλλ+=++> ,则ABC ∆的外心一定在满足条件的P 点集合中.考点二三角形四心的应用【例题选讲】[例2](1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案π6解析由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+33c (-GA →-GB →)-33c -33c →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a=b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6.(2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则pq=________.答案32解析如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12|AC→||AO →|=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+q AC →得AO →·AB →=pAB →2+qAB →·AC →,所以|AO ,→||AB ,→|cos ∠BAO =pAB →2+q |AB →||AC →|cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为()ABC -45,D -35,答案A解析取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC→)-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)-xAB →.由OM →⊥AB →,得2-yAC →·AB →=0,①,由ON →⊥AC →,得2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得-2x +y =0,+x -8y =0,解得x=45,y =35.故实数对(x ,y )(4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案23解析如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23.(5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则()A .33AB AC HM MO +=+ B .33AB AC HM MO+=- C .24AB AC HM MO +=+ D .24AB AC HM MO+=- 答案D解析如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM = ,M 为BC 中点,∴AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D .【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC=0,则B 的大小为________.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=m AM →成立,则m 等于()A .2B .3C .4D .57.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为()A .33B .3C .32D .238.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC=0,则△ABC 的内角A 等于()A .30°B .60°C .90°D .120°10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=()A .10B .9C .8D .611.若点P 是△ABC 的外心,且PA →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为()A .12B .-12C .-1D .112.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于()A .32B .3C .3D .2313.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为()A .πB .4π3C .2πD .8π314.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则()A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 115.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是()A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大值为()A .1B .2C .3D .417.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.18.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则|PA →+PB →+2PC →|的最大值为()A .23B .33C .43D .5319.已知O 是锐角三角形ABC ∆的外接圆的圆心,且A θ∠=,若cos cos 2sin sin B C AB AC mAO C B += ,则m =()A .sin θB .cos θC .tan θD .不能确定20.在ABC ∆中,5BC =,G ,O 分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是()A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能21.在ABC ∆中,3AB=,BC =,2AC =,若点O 为ABC ∆的内心,则AO AC ⋅的值为()A .2B .73C .3D .522.设O 是△ABC 的内心,AB =c ,AC =b ,若AO →=λ1AB →+λ2AC →,则()A .λ1λ2=b cB .λ21λ22=b cC .λ1λ2=c 2b2D .λ21λ22=c b23.在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为()A .1063B .1463C .43D .6224.在△ABC 中,已知向量AB →与AC →BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形25.ABC ∆外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m 的值()A .12B .2C .1D .34专题十平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0.(3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r .②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b cr +-.(4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一三角形四心的判断【例题选讲】[例1](1)已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过()A .△ABC 的内心B .△ABC 的垂心C .△ABC 的重心D .AB 边的中点答案C解析取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案内心解析由条件,得OP →-OA →=AP →=,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的()A .垂心B .内心C .外心D .重心答案C解析设BC 边中点为D ,∵AC →2-AB →2=2AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的()A .重心B .垂心C .外心D .内心答案B 解析因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C )=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0 ,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0 ,④OA OB OC ++=0则点O 分别为ABC ∆的()A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案D(6)下列叙述正确的是________.①1()3PG PA PB PC G =++⇔为ABC ∆的重心.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案①②解析①G为ABC ∆的重心⇔GA GB GC ++=0 ⇔PA PG PB PG PC PG -+-+-=0 ⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅ ⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥ PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0 ⇔||||()AB PC BC PC CA ++ ||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0 . ||||||||BC CA CA CB = ,∴||BC CA ||CA CB + 与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅= (OB222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔ 为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心1.答案C解析由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的()A .内心B .外心C .重心D .垂心2.答案C 解析设BC 的中点为M .由已知原式可化为2PA OB OP OC OP λ=-+- .即2PA PBλ=2PC PM += ,所以PM PA λ=,所以P ,A ,M 三点共线.所以P 点在边BC 的中线AM 上.故P 点的轨迹一定过ABC ∆的重心.3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心3.答案C解析∵|AB |sin B =|AC |sin C ,设它们等于t ,∴OP →=OA →+λ·1t(AB →+AC →),设BC 的中点为D ,则AB →+AC →=2AD →,λ·1t (AB →+AC →)表示与AD →共线的向量AP →,而点D 是BC 的中点,即AD 是△ABC 的中线,∴点P 的轨迹一定通过三角形的重心.故选C .4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的()A .垂心B .外心C .内心D .重心4.答案C 解析由正弦定理得2sin 2sin 2sin 0R AOA R BOB R COC ++= ,即0aOA bOB cOC ++=,由上式可得()()cOC aOA bOB a OC CA b OC CB =--=-+-+ ,所以()a b c OC aCA bCB ++=--=ab -(||||CA CB CA CB +,所以OC 与C ∠的平分线共线,即O 在C ∠的平分线上,同理可证,O 也在A ∠,B ∠的平分线上,故O 是ABC ∆的内心.5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的()A .垂心B .外心C .内心D .重心5.答案C 解析3AB = ,2AC =,13||22AB ∴= ,33||42AC = .即133||||242AB AC ==,设12AE AB = ,34AF AC = ,则||||AE AF =,∴1324AD AB AC AE AF =+=+ .由向量加法的平行四边形法则可知,四边形AEDF 为菱形.AD ∴为菱形的对角线,AD ∴平分EAF ∠.∴直线AD 通过ABC ∆的内心.故选C .6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的()A .重心B .外心C .内心D .垂心6.答案C解析||||AP AB AC AC AB =+ ∴11||||()||||AP AB AC AC AB AC AB =+,∴根据平行四边形法则知11||||AC AB AC AB +表示的向量在三角形角A 的平分线上,而向量AP 与11||||AC AB AC AB +共线,P ∴点的轨迹过ABC ∆的内心,故选C .7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PCb⋅=⋅+22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的()A .重心B .外心C .内心D .垂心7.答案C 解析因为22c b c c a c PA PB PA PC PA PB PC PB b b a a--⋅=⋅+=⋅+ ,所以2PA PB PA ⋅-=()c PA PC PA b ⋅-,2()c PA PB PB PB PC PB a ⋅-=⋅- ,所以c PA AB PA AC b ⋅=⋅ ,c BA PB PB BC a⋅=⋅ ,所以||cos ||cos c PA c PAB PA b PAC b ⋅∠=∠ ,||cos ||cos c PB c PBA PB a PBC a⋅∠=∠ ,所以PAB PAC ∠=∠,PBA PBC ∠=∠,所以AP 是BAC ∠的平分线,BP 是ABC ∠的平分线,所以点P 是ABC ∆的内心,故选C .8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的().A .重点B .外心C .内心D .垂心8.答案B解析9.P 是△ABC 所在平面内一点,若PA →·PB →=PB →·PC →=PC →·PA →,则P 是△ABC 的()A .外心B .内心C .重心D .垂心9.答案D解析由PA →·PB →=PB →·PC →,可得PB →·(PA →-PC →)=0,即PB →·CA →=0,∴PB →⊥CA →,同理可证PC →⊥AB →,PA →⊥BC →.∴P 是△ABC 的垂心.10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的()A .外心B .内心C .重心D .垂心10.答案D解析11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+ ,则点(O )A .在AB 边的高所在的直线上B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心11.答案A 解析取AB 的中点D ,则 22||||BA OA BC AB OB AC ⋅+=⋅+ ,∴2()||BA OA OB BC ⋅+=-+2||AC ,∴2(2)BA OD AB CD ⋅=⋅-,∴20BA OC = ,∴BA OC ⊥ ,∴点O 在AB 边的高所在的直线上,故选A .12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+ ,则O 点的轨迹一定通过ABC ∆的()A .外心B .内心C .重心D .垂心12.答案D 解析 BC OC OB =- ,CA OA OC =- 、AB OB OA =- ,∴由22222OA BC OB CA OC+=+= 2AB + ,得222222()()()OA OC OB OB OA OC OC OB OA +-=+-=+- ,∴OB OC OA OC OA OB ⋅=⋅=⋅ ,即()()()OC OB OA OA OC OB OB OC OA ⋅-=⋅-=⋅-,∴OC AB OA BC OB AC ⋅=⋅=⋅ ,则OC AB ⊥,OA BC ⊥,OB AC ⊥.O ∴是ABC ∆的垂心.故选D .13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅= PB PC⋅ =PA PC ⋅,则O ,N ,P 分别是ABC ∆的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心13.答案C14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足(0)||||AB ACOP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中;③动点P 满足(0)||sin ||sin AB ACOP OA AB B AC C λλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB ACOP AB B AC Cλλ+=++> ,则ABC ∆的外心一定在满足条件的P 点集合中.14.答案①②③④⑤解析对于①, 动点P 满足OP OA PB PC =++ ,∴AP PB PC =+,则点P 是ABC ∆的心,故①正确;对于②, 动点P 满足()(0)||||AB AC OP OA AB AC λλ=++>,∴(||ABAP AB λ=+||AC AC (0)λ>,又||||AB ACAB AC +在BAC ∠的平分线上,∴AP 与BAC ∠的平分线所在向量共线,ABC ∴∆的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++(0)λ>,∴()||sin ||sin AB ACAP AB B AC C λ=+,(0)λ>,过点A 作AD BC ⊥,垂足为D ,则||sin AB B = ||sin AC C AD =,()AP AB AC ADλ=+,向量AB AC + 与BC 边的中线共线,因此ABC ∆的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足()(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,(AP λ= ∴)(0)||cos ||cos AB AC AB B AC C λ+> ,∴()(||||cos ||cos AB ACAP BC BC BC AB B AC Cλλ=+=-||)0BC =,∴AP BC ⊥ ,ABC ∴∆的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满足OP = ()(0)2||cos ||cos OB OC AB AC AB B AC C λλ+++> ,设2OB OC OE += ,则(||cos ABEP AB Bλ=+)||cos AC AC C ,由④知(0||cos ||cos AB ACBC AB B AC C+=,∴0EP BC = ,∴EP BC ⊥ ,P ∴点的轨迹为过E 的BC 的垂线,即BC 的中垂线;ABC ∴∆的外心一定在满足条件的P 点集合,⑤正确.故正确的命题是①②③④⑤.考点二三角形四心的应用【例题选讲】[例2](1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案π6解析由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+33c (-GA →-GB →)-33c-33c →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a =b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6.(2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则pq=________.答案32解析如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12|AC→||AO →|=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+q AC →得AO →·AB →=pAB →2+qAB →·AC →,所以|AO ,→||AB ,→|cos ∠BAO =pAB →2+q |AB →||AC →|cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为()A B C -45,D -35,答案A解析取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC →)-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)-xAB →.由OM →⊥AB →,得2-yAC →·AB →=0,①,由ON →⊥AC →,得2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得-2x +y =0,+x -8y =0,解得x=45,y =35.故实数对(x ,y )(4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案23解析如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23.(5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则()A .33AB AC HM MO +=+ B .33AB AC HM MO+=- C .24AB AC HM MO +=+ D .24AB AC HM MO+=- 答案D解析如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM = ,M 为BC 中点,∴AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D .【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.1.答案4解析设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos 60°+32)=4.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC=0,则B 的大小为________.2.答案60°解析∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA→+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c ,∴三角形ABC 是等边三角形,则角B =60°.秒杀∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵sin A ·GA +sin B ·GB +sin C ·GC =0,∴sin A =sin B =sin C ,∴三角形ABC 是等边三角形,则角B =60°.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.3.答案112解析设a ,b ,c 分别为角A ,B ,C 所对的边,由正弦定理得2a ·GA →+3b ·GB →+3c ·GC →=0,则2a ·GA →+3b ·GB →=-3c ·GC →=-3c (-GA →-GB →),即(2a -3c )GA →+(3b -3c )GB →=0.又GA →,GB →不共3c =0,-3c =0,由此得2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112.秒杀∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,∴2sin A=3sin B =3sin C ,∴2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112.4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.4.答案5解析如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴C (a ,0).∵AC →·AB →=-1-12,--12,-+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12(BA →+BC →)(4,0)=BO →·AC →5.5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____.5.答案35解析因为O 是重心,所以OA →+OB →+OC →=0,即OA →=-OB →-OC →,PC →=34AC →⇒OC →-OP →=34(OC →-OA →)⇒OP →=34OA →+14OC →=-34OB →-12OC →,QC →=nBC →⇒OC →-OQ →=n (OC →-OB →)⇒OQ →=nOB →+(1-n )OC →,因为P ,O ,Q 三点共线,所以OP →∥OQ →,所以-34(1-n )=-12n ,解得n =35.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=m AM →成立,则m 等于()A .2B .3C .4D .56.答案B解析∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.连接AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →),即AB→+AC →=3AM →,∴m =3,故选B .7.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为()A .33B .3C .32D .237.答案A解析∵OA →+OB →+OC →=0,∴O 是△ABC 的重心,于是S △OBC =13S △ABC .∵AB →·AC →=2,∴|AB →|·|AC →|·cos ∠BAC =2,∵∠BAC =60˚,∴|AB →|·|AC →|=4.又S △ABC =12|AB →|·|AC →|sin ∠BAC =3,∴△OBC的面积为33,故选A .8.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.8.答案(-2,0)解析依题意,设OP →=λOC →(0<λ<1),由OA →+OB →+OC →=0,知OC →=-(OA →+OB →),所以OP →=-λOA →-λOB →,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC=0,则△ABC 的内角A 等于()A .30°B .60°C .90°D .120°9.答案B 解析由OA →+OB →+OC →=0,知点O 为△ABC 的重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=()A .10B .9C .8D .610.答案A解析作OS ⊥AB ,OT ⊥AC ∵O 为△ABC 的外接圆圆心.∴S 、T 为AB ,AC 的中点,且AS →·SO→=0,AT →·TO →=0,AO →=AS →+SO →,AO →=AT →+TO →,∴AO →·(AB →+AC →)=AO →·AB →+AO →·AC →=(AS →+SO →)·AB →+(AT →+TO →)·AC →=AS →·AB →+SO →·AB →+AT →·AC →+TO →·AC →=12AB →·AB →+12AC →·AC →=12|AB →|2+12|AC →|2=8+2=10.故选A .优解:不妨设∠A =90°,建立如图所示平面直角坐标系.设B (4,0),C (0,2),则O 为BC 的中点O (2,1),∴AB →+AC →=2AO →,∴AO →·(AB →+AC →)=2|AO →|2=2(4+1)=10.故选A .11.若点P 是△ABC 的外心,且PA →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为()A .12B .-12C .-1D .111.答案C 解析设AB 的中点为D ,则PA →+PB →=2PD →.因为PA →+PB →+λPC →=0,所以2PD →+λPC →=0,所以向量PD →,PC →共线.又P 是△ABC 的外心,所以PA =PB ,所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°,所以四边形APBC 是菱形,从而PA →+PB →=2PD →=PC →,所以2PD →+λPC →=PC →+λPC →=0,所以λ=-1,故选C .12.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于()A .32B .3C .3D .2312.答案C解析∵OA →+AB →+OC →=0,∴OB →=-OC →,故点O 是BC 的中点,且△ABC 为直角三角形,又△ABC 的外接圆的半径为1,|OA →|=|AB →|,∴BC =2,AB =1,CA =3,∠BCA =30°,∴CA →·CB →=|CA →||CB →|·cos 30°=3×2×32=3.13.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为()A .πB .4π3C .2πD .8π313.答案B 解析设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c .由题意可得12bc sin A =3,bc cos A=2,∴tan A =3.又A ∈(0,π),∴A =π3.∴bc cos π3=2,即bc =4.由余弦定理可得a 2=b 2+c 2-2bc cosA =b 2+c 2-bc ≥bc =4,即a ≥2.又由正弦定理得asin A=2R (R 为△ABC 外接圆的半径),∴2R sin A =a ≥2,即3R ≥2,∴R 2≥43,∴三角形外接圆面积的最小值为4π3.14.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则()A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 114.解析:选D如图,分别取AB ,AC 的中点,为D ,E ,并连接OD ,OE ,根据条件有OD ⊥AB ,OE⊥AC ,∴AO →·AB →=12|AB ―→|2=92,AO →·AC →=12|AC ―→|2=6,∴AO →·AB →=(xAB →+yAC →)·AB →=9x +63y ·cos ∠BAC =92,①,AO →·AC →=(xAB →+yAC →)·AC →=63x cos ∠BAC+12y =6,②,又9x +12y =8,③,∴由①②③解得cos ∠BAC =33-78.由余弦定理得,BC =9+12-2×3×23×33-78=15+3212.∴BC >AC >AB .在△ABC 中,由大边对大角得,∠BAC >∠ABC >∠ACB ,∴∠BOC >∠AOC >∠AOB ,∵|OA →|=|OB →|=|OC →|,且余弦函数在(0,π)上为减函数,∴OB →·OC →<OA →·OC →<OA →·OB →,即I 2<I 3<I 1.15.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是()A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]15.答案B解析由题意∠C =45°,所以∠AOB =90°,以OA ,OB 为x ,y 轴建立平面直角坐标系,如图,不妨设A (1,0),B (0,1),则C 在圆O 的优弧AB 上,设C (cos α,sin α),则α显然OC →=cos αOA →+sin αOB →,即m =cos α,n =sin α,m +n =cos α+sin α=2sinαα+π4∈∈-1m +n ∈[-2,1),故选B .16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大。
高中数学:三角函数与平面向量综合问题—6种类型全面解析
名师寄语
本讲要点小结与建议:
三角函数和平面向量的综合问题是近几年数学高考的一个新的视角.求解这类问题,既要求我们具有娴熟的三角函数的恒等变换技能,又要求我们熟练地进行平面向量的四种运算,特别是数乘运算和数量积运算.因此,在高三复习中,我们应当选择典型的综合性问题进行求解训练,提高我们处理这类综合问题的能力.
二、三角函数与平面向量综合问题—6种类型
题型一:结合向量的数量积,考查三角函数的化简或求值
题型二:结合向量的夹角公式,考查三角函数中的求角问题
题型三:结合三角形中的向量知识考查三角形的边长或角的运算
题型四:结合三角函数的有界性,考查三角函数的最值与向量运算
题型五:结合向量平移问题,考查三角函数解析式的求法
题型六:结合向量的坐标运算,考查与三角不等式相关的问题
【跟踪训练】
【参考答案】。
精品文档高考中的三角函数一、安徽高考考试说明中对三角函数和平面向量的要求: (八)基本初等函数Ⅱ(三角函数) 1.任意角、弧度(1)了解任意角的概念和弧度制的概念。
(2)能进行弧度与角度的互化。
2.三角函数(1) 理解任意角三角函数(正弦、余弦、正切)的定义。
(2) 能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式,能画出sin ,cos ,tan y x y x y x ===的图像,了解三角函数的周期性。
(3) 理解正弦函数、余弦函数在[]0,2π上的性质(如单调性、最大值和最小值、图像与x 轴的交点等),理解正切函数在 (,)22ππ-内的单调性。
(4) 理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x= (5) 了解函数sin()y A x ωϕ=+的物理意义;能画出函数sin()y A x ωϕ=+的图像。
了解参数对函数图像变化的影响。
(6) 会用三角函数解决一些简单实际问题,了解三角函数是描述周期变化现象的重要函数模型。
(九)平面向量1.平面向量的实际背景及基本概念(1) 了解向量的实际背景。
(2) 理解平面向量的概念和两个向量相等的含义。
(3) 理解向量的几何表示。
2.向量的线性运算(1) 掌握向量加法、减法的运算,理解其几何意义。
(2) 掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3) 了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示(1) 了解平面向量的基本定理及其意义。
(2) 掌握平面向量的正交分解及其坐标表示。
(3) 会用坐标表示平面向量的加法、减法与数乘运算。
(4) 理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积(1) 理解平面向量数量积的含义及其物理意义。
(2) 了解平面向量的数量积与向量投影的关系。
(3) 掌握数量积的坐标表达式,会进行平面向量数量积的运算。
三角函数与平面向量综合问题经典回顾开篇语三角函数与平面向量是高中数学的两大重点内容,在近几年的数学高考中,除了单独考查三角函数问题和平面向量问题以外,还常常考查三角函数与平面向量的交汇问题.即一个问题中既涉及三角函数内容,又涉及平面向量知识,以此检测我们综合处理问题的能力.因此,在高三数学复习中,我们应当有意识地关注平面向量与三角函数的交汇,通过典型的综合问题的分析和研究,逐步掌握这类问题的求解策略.开心自测题一:设ABC ∆的三个内角,,A B C ,向量sin ,sin )A B =m ,(cos )B A =n ,若1cos()A B ⋅=++m n ,则C =( )A .6π B .3π C .23π D .56π题二:设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则m λ的取值范围是( ). A .[6,1]-B .[48],C .[1,1]-D .[1,6]-金题精讲题一:平面上,,O A B 三点不共线,设,OA = OB = a b ,则AOB △的面积等于( ).A BC D题二:设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )ααββββ===-a b c (Ⅰ)若a 与2-b c 垂直,求tan()αβ+的值;(Ⅱ)求||+b c 的最大值;(Ⅲ)若tan tan 16αβ=,求证:a ∥b .题三:在ABC △中,角,,A B C 所对的边分别为,,a b c ,且满足cos 25A =,3AB AC ⋅= .(I )求ABC △的面积;(II )若6b c +=,求a 的值.题四:设ABC △是锐角三角形,,,a b c 分别是内角,,A B C 所对边长,并且22sin sin() sin() sin 33A B B B ππ=+-+.(Ⅰ)求角A 的值;(Ⅱ)若12,AB AC a == ,b c (其中b c <).名师寄语本讲要点小结与建议:三角函数和平面向量的综合问题是近几年数学高考的一个新的视角.求解这类问题,既要求我们具有娴熟的三角函数的恒等变换技能,又要求我们熟练地进行平面向量的四种运算,特别是数乘运算和数量积运算.因此,在高三复习中,我们应当选择典型的综合性问题进行求解训练,提高我们处理这类综合问题的能力.三角函数与平面向量综合问题经典回顾讲义参考答案开心自测题一:C . 题二:A .金题精讲题一:C .题二:(Ⅰ)tan()2αβ+=;(Ⅱ)(Ⅲ)略.题三:(I )2ABCS ∆=;(II )a = 题四:(Ⅰ) 3A π=;(Ⅱ) 4,6b c ==.。