六年级数学认识众数
- 格式:ppt
- 大小:318.00 KB
- 文档页数:19
二、百分数的应用1、带有百分号的数叫做百分数,百分数相当于一个比值,因而没有单位。
2、四个公式:①谁是谁的几分之几?②谁是谁的百分之几?前面的数是字后面的数前面的数是字后面的数×100%③谁比谁多百分之几?④谁比谁少百分之几?比字前面的数-后面的数比字后面的数×100%比字后面的数-前面的数比字后面的数×100%3、两个公式:①增加量(减少量)=原来的量×增加的百分数(减少的百分数)②现在的量=原来的量±增加量(减少量)4、存入银行的钱叫本金,利息与本金的比值叫做利率。
利息=本金×利率×时间5、含有未知数的等式就是方程,如x+5=66、解方程的步骤:①去分母②去括号③移项④合并同类项⑤系数化为1例;1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的价钱是这西服的()%。
2、从学校到文化宫,甲要20分钟,乙要16分钟。
乙的时间比甲少()%;乙的速度比甲()%。
3、()千米的60%是3千米;比40吨少20%()吨。
4、甲数是乙数的比是5/2,乙数比甲数少()%,甲数比乙数多()%。
5、五月份销售额比四月份增加15%,五月份销售额相当于四月份的()%,四月份销售额比五月份少()%。
6、六一期间游乐场门票八折优惠,现价是原价的()%。
儿童文具店所有学习用品一律折出售,节省()%。
四、比的认识1、两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
2、分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
3、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
4、比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
六年级下册数学教案(集锦15篇)六年级下册数学教案1全册教材分析教学内容:理解百分数的意义,体会百分数与分数、小数的联系和区别,在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。
认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;初步认识众数与中位数的意义。
教学目标:知识与技能目标1.让学生经历应用百分数的知识解决生活中一些常见问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关问题的能力;在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。
2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。
3.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;结合实例,初步认识众数与中位数的意义,会求一组简单数据的众数和中位数,初步体会众数、中位数和平均数等不同统计量的不同特点。
4.让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问题中数量关系、空间形式和数据信息理解,提高综合应用数学知识和方法能力。
#六年级数学上册第五单元《数据处理》期末复习要点1. 数据收集和整理•数据收集指的是通过调查和观察收集数据的过程。
•数据整理包括对数据进行排序、编表、制作图表等整理方式,以便更好地分析和理解数据。
2. 数据的展示和分析•数据的展示可以通过制作图表的方式实现,常用的图表有折线图、柱状图、饼图等。
•数据的分析可以通过观察和比较图表来得出结论,例如找出最大值、最小值,分析数据的趋势等。
3. 平均数•平均数是一组数据的总和除以数据的个数。
•计算平均数的步骤:把所有数据相加,然后除以数据的个数。
4. 众数和中位数•众数是一组数据中出现次数最多的数,可能有一个或多个众数。
•中位数是一组数据从小到大排列后,位于中间位置的数,如果数据个数是奇数,那么中位数就是中间的数;如果数据个数是偶数,那么中位数就是中间两个数的平均数。
5. 范围和极差•范围是一组数据的最大值和最小值的差。
•极差是一组数据的最大值减去最小值得到的差。
6. 数据的分类和统计•数据的分类指的是根据某一属性将数据分成不同的组别,常用的分类方式有年龄、性别、兴趣爱好等。
•数据的统计指的是对不同组别的数据计数或计算百分比等统计指标,用来观察和分析数据的规律和特点。
7. 数据的预测和推断•数据的预测是根据已有数据的特点和规律推测未来的数据趋势。
•数据的推断是根据已有数据的特点和规律推断出可能的原因或结果。
8. 数据的误差和有效数字•数据的误差指的是测量的结果与真实值之间的差异。
•有效数字指的是测量结果中能够反映出测量精确度的数字。
9. 数据的应用•数学中数据处理的应用非常广泛,可以应用于调查研究、经济管理、科学研究等领域。
数据处理可以帮助我们更好地理解和分析各种问题,并得出合理的结论。
以上是六年级数学上册第五单元《数据处理》的期末复习要点。
通过复习这些知识点,可以帮助同学们更好地理解和应用数据处理的方法和技巧,提高数学能力。
希望同学们能够认真复习,并在期末考试中取得好成绩!。
《中位数与众数》是北师大版《数学》八年级上册第 8 章第 2 节内容。
《课程标准》对本节内容的要求是:“根据具体问题,能选择合适的统计量表示数据的集中程度。
”下面是给大家分享的北师大版中位数和众数教学设计,供大家参考,阅读。
北师大版中位数和众数教学设计 1教学目标:知识与技能:学生理解众数的含义,会求一组数据的众数,能选择合适的统计量表示数据的不同特征。
过程与方法:1.通过与学过的统计量知识(平均数、中位数)的比较,认识众数。
2.让学生在统计数据、观察分析、合作探索、联系生活中理解众数。
情感态度与价值观:1.在数学活动中培养学生的观察能力,计算能力,让学生获得成功的体验,树立自信心。
2.通过经历在实际问题中求众数的过程,让学生进一步明白身边处处有数学,体味到知识来源于生活又服务于生活。
同时也对学生进行了保护视力的思想教育。
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数、平均数三者的区别,在具体的问题情境中如何选择合适的统计量来表示。
教具准备:相关课件、计算器、学习卡。
教学过程:一、在生活情境中体验,培养统计意识复习导入板书统计统计我们并不目生,我们学过关于统计的哪些知识呢?知道统计量吗?我们学过哪些统计量啊 ?统计量是统计理论中用来对数据进行分析、检验的变量。
板书平均数中位数平均数用来表示什么? 平均水平所有的中位数用来表示什么? 普通水平所处位置二、在数据整理中体验,统计量所表示的意义同学们说的真好。
奖励一下大家(播放视频) 这个节目怎么样?哪里好?动作整齐身高差不多师:“六一”儿童节快到了,为了庆祝“六一”国际儿童节,我们学校的五年级准备编排一个集体舞,每班选 10 人,这是五年(2) 班的 24 位候选同学的身高数据。
(课件出示 24 个数据)怎样找这十个同学合适呢?用哪个数据做标准呢? 平均数你就快速的用计算器算出来中位数你也快点罗列算出来1、提取数据。
寻觅 10 个身高比较接近的几组数据。
六年级数学上册必背知识一、圆的知识1、圆是由曲线围成的平面封闭图形。
圆中心的一点叫圆心,用字母O 表示。
以某一点为圆心,可以画无数个圆。
连接圆心和圆上任意一点的线段叫半径,用字母r 表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d 表示。
2、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
3、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的12。
4、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
5、圆内最长的线段是直径,圆规两脚之间的距离是半径。
6、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽。
7、把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10、圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示, π是一个无限不循环小数,为了计算简便,通常取近似值3.14。
11、圆的周长=圆周率×直径 即 C 圆=πd =2πr 。
12、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
13、如果用S 表示圆的面积, r 表示圆的半径,那么圆的面积公式:S 圆=πr 2 。
平均数、中位数、众数三者的联系与区别赵湾镇中心学校周云忠六年级数学总复习时,对小学阶段认识的统计量平均数、中位数、众数三种统计量进行了对比,平均数、中位数、众数三种统计量的运用如下:一组数据中如果有特别大的数或特别小的数时,一般用中位数。
一组数据比较多(20个以上),范围比较集中,一般用众数。
其余情况一般还是平均数比较精确。
一、联系与区别:1、平均数是通过(挖高补低)计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,中位数在一组数据的数值排序中处中间的位置,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和众数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点平均数:(1)需要全组所有数据来计算(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我的理解是:⒈众数一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。