南京市江宁区湖熟片2015年10月九年级(上)第一次月考数学试卷(解析版)
- 格式:doc
- 大小:482.00 KB
- 文档页数:20
苏教版九年级数学上册第一次月考测试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( ) A .15B .15C .5D .-52.将直线23y x向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A .24yxB .24yx C .22yxD .22yx 3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是()A .30°B .60°C .30°或150°D .60°或120°4.用配方法解方程2890x x ,变形后的结果正确的是()A .249x B .247x C .2425x D .247x5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是()A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.抛物线2yaxbx c a0的部分图象如图所示,与x 轴的一个交点坐标为4,0,抛物线的对称轴是x1.下列结论中:②;③方程2①;2a b0abc0ax bx c3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为2,0;⑤若点A m,n在该抛物线上,则2am bm c a b c.其中正确的有()A.5个B.4个C.3个D.2个8.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2) B.(―9,18)C.(―9,18)或(9,―18) D.(―1,2)或(1,―2)9.如图,一把直尺,60的直角三角板和光盘如图摆放,A为60角与直尺交点,3AB,则光盘的直径是()A.3 B.33C.6D.6310.在同一坐标系中,一次函数2y x m的图象可能y mx n与二次函数2是().A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816=_____.2.分解因式:a3-a=___________3.若a、b为实数,且b=22117a aa+4,则a+b=__________.4.(2017启正单元考)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,小军、小珠之间的距离为 2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为 1.8 m,1.5 m,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解分式方程:3211x x x2.先化简代数式1﹣1xx÷2212xx x,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、A6、D7、B8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、(1)(1)a a a3、5或34、125、406、3三、解答题(本大题共6小题,共72分)1、1x2、-11x,-14.3、(1)略(2)2-14、河宽为17米5、(1)50;(2)见解析;(3)16.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。
苏教版九年级数学上册第一次月考考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+- 3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣2 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .23C .3D .2.510.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.分解因式:ab 2﹣4ab+4a=________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,已知反比例函数y=(k 为常数,k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.4.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG=. (1)求证:△ADF ∽△ACG ;(2)若12AD AC =,求AF FG 的值.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、D7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、a (b ﹣2)2.3、24、425、6、-2三、解答题(本大题共6小题,共72分)1、32x =-. 2、(1)2y x 2x 3=-++(2)(1,4)3、(1) 65°;(2) 25°.4、(1)略;(2)1.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。
第一学期第一月考模拟九年级数学(考试内容:第二I-一章——第二十二章第一节时间:120分钟,满分:150分)选择题(共40分)一、选择题(每小题4分,共40分)下列方程中,是关于兀的一元二次方程的是方程 2x(x -3) = 5(x — 3)的根为()如果x=4是一元二次方程X 2-3X = 6/2的一个根,贝I 」常数a 的值是三角形的两边长分別为3和6,第三边的长是方程疋-6x + 8 = 0的一个根,则这个三角形的周长是()8.从正方形铁片,截去2cm 宽的一个长方形,余下的血积是48cn?,贝U 原来的正方形铁片的面积是()9. —•个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25B.36C.25 或 36D. —25 或一36A. 2.3(X 4-1)2=2(X + 1);B. g +丄-2 = 0X X若函数y=做宀“一6是二次函数且图象开口向上,C. ax" +bx + c = 0 D ・ 2x = 14- A. -2 B. 4 C- 4或一2 D ・4或3关于函数y=,的性质表达正确的一项是(A.无论x 为任何实数,y 值总为正 C.它的图象关于y 轴对称B. D. 当兀值增人时,y 的值也增大 它的图象在第一、 三象限内一元二次方程X 2+3X = 0的解是(A ・ x = —3B. x { = 0?x 2 = —3C.D. x = 35.A. x = 2.5 B ・x = 3 C.x = 2.5 或兀=3D •以上都不对6.A ・2 B. -2 C. ±2D. ±4A. 13B. 11C. 9D. 147. A. 8cmB. 64cmC. 8cm 2D. 64cm 210.某经济开发区今年一刀份工业产值达50亿元,笫一季度总产值为175亿元,问二、三刀平均每刀的增长率是多少?设平均每月增长的百分率为x,根据题意得方程为()第II卷非选择题(共110分)二、填空题(每小题4分,共40分)11.把一元二次方程(兀一3)2=4化为一般形式为:_________ ,二次项系数为:__________ , 一次项系数为:________ ,常数项为: ________ .12.已知2是关于x的一元二次方程?+4x-p=0的一个根,则该方程的另一个根是_______________ ・13.已知兀】,JO是方程X2~2X+]= 0的两个根,则丄+丄=兀1 X214.若|/?-l|+V^4=0,且一元二次方程kx2+ax+b = 0有两个实数根,则R的取值范围是__________________ .15.已知函数y=(m-2)^+rnx-3(m为常数).⑴当〃7 ___________ 吋,该函数为二次函数;⑵当〃7 __________时,该函数为一次函数.16.二次函数y=ax2(a/0)(fy图象是__ ,当Q0时,开口向 ________ ;顶点坐标是 _____ ,对称轴是_______ .17.抛物线)=2,—加+3的对称轴是宜线x= -1,则b的值为______________ .18.抛物线y=—2,向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是___________ .19.如左下图,已知二次函数y=ax2+bx+c的图象与x轴交于4(1,0), 3(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是20.二次函数y=~x2+bx+c的图象如右上图所示,则一次函数y=bx+c的图象不经过第__________________ 象限.三、解答题(共70分)21.(8分)已知x = \是一元二次方程+ -m2x-2m-\ = 0的一个根.求m的值,并写出此吋的一元二次方程的一般形式.22.(每题7分,共14分)用适当的方法解下列方程:(l)2?-3x-5 = 0 (2) <—4x+4=0.23. (10分)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高二01,与篮圈屮心的水平9距离为7m,当球出手后水平距离为4m 时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1) 建立如图所示的平而直角处标系,求抛物线的解析式并判断此球能否准确投中?(2) 此时,若对方队员乙在甲前面lm 处跳起盖帽拦截,已知乙的最人摸高为3.1m,那么他能否获得成功?(JC4m24. (12分)已知,在同一平面直角坐标系中,正比例函数y = -2x 与二次函数y=-x 2+2x+c 的图象交于点 4(— 1, m ).(1) 求加,e 的值;(2) 求:次函数图彖的对称轴和顶点坐标.25. (12分)某商场礼品柜台新年期间购进人址贺年卡,一种贺年卡平均每天可售岀500张,每张盈利0.3元. 为了尽快减少库存,商场决定采取适当的降价措施,调杏发现,如果这种贺年卡的售价每降低0」元,那么 商场平均每天可多售出100张,商场耍想平均每天盈利120元,每张贺年R应降价多少元?4m26. (14分)如图,抛物线y=ax 2-5x+4a 与x 轴相交于点A, B,且过点C (5,4).⑴求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二彖限,并写出平移后抛物线的解析式.20 (本题10分)解:由题意可知,抛物线经过(0, —),顶点坐标是(4, 4) • 9设抛物线的解析式是y = 6/(x-4)2+4,解得a = --,所以抛物线的解析式是y = --(x-4)2+4 ;篮9 9 圈的坐标是(7, 3),代入解析式得y = -£(7-+4 = 7,这个点在抛物线上,所以能够投中.1 C(2)当x = \时,),=一6(1_4)「+4 = 3<3.1,所以能够盖帽拦截成功.24. (本题12分)解:(1);・点A 在正比例函数y = -2x 的图象上,/.w=-2x (-1)=2.・••点A 坐标为(一1, 2). T 点A 在二次函数图象上—1 —2 + c=2,即c=5.参考答案一、 选择题(每小题4分,共40分)1. A2.B 3・ C 4.B 5・ C 6・ C 7.A 8. D 9. C 10. D二、 填空题(每小题4分,共40分)11. %2-6X + 5 = 0;1;-6;5 12. -6 13.2 14.^<4H/r^0 15. H 2;=216.抛物线;上;(0,0)17. -41& y = -(x + l 『+7三、 解答题(共60分) 19.(2-1)20.三21.(本题8分)解:m = 0 ,22. 解: (每题7分,共14分) (1) X] = -1, x 2 =—(2) Xj — %2 = 223.(2)・.•二次函数的解析式为y=—x2+2x+5,・・.y=—f+2x+5= -(兀一I)? +6 .・・・对称轴为直线x=l,顶点坐标为(1, 6).25.(本题12分)解:设每张贺年卡应降价兀元. 则根据题意得:(0.3-X)(500+型兰)=120,0.1整理,得:100/ + 20x —3 = 0, 解得:坷=0.1,兀2=-0.3 (不合题意,舍去).・・・兀=0・1.答:每张贺年卡应降价0」元.26.(本题14 分)解:(1)«=1, P(-,~匕‘ 4丿。
九年级数学(上)第一次月考数学试卷一、选择题:1.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2 B.﹣2或4 C.2或﹣3 D.3或﹣2 2.(3分)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5 C.4.5 D.4 3.(3分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为()A.6 B.5 C.4 D. 34.(3分)下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧5.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0 6.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm 7.(3分)用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4C.(x﹣1)2=1 D.(x﹣1)2=78.(3分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.17 9.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根10.(3分)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.5 11.(3分)已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm为半径作圆,则这个圆与斜边AB所在直线的位置关系是()A.相交B.相切C.相离D.不能确定12.(3分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9二、填空题:13.(3分)三角形两边的长分别是8和6,第三边的长是方程x2﹣12x+20=0的一个实数根,则三角形的周长是.14.(3分)如果二次三项式x2﹣2(m+1)x+16是一个完全平方式,那么m的值是.15.(3分)某小区2016年绿化面积为2000平方米,计划2018年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是.16.(3分)设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2﹣2mn+n2= .17.(3分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.18.(3分)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k 的取值范围是.19.(3分)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.20.(3分)已知关于x的方程2x2+ax+a﹣2=0.当该方程的一个根为1时,则a的值为,该方程的另一根为.21.(3分)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.22.(3分)某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3000元/台,设平均每次的降价率为x,根据题意列出的方程是.三、解答题:23.已知关于x的方程x2﹣6x+p2﹣2p+5=0的一个根为2,求另一个根及p的值.24.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.25.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.26.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.27.随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2014年底拥有家庭电动自行车125辆,2016年底家庭电动自行车的拥有量达到180辆.(1)若该小区2014年底到2017年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2017年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.参考答案一、选择题:1.【解答】解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.2.【解答】解:解方程x2﹣8x+15=0得:x1=3,x2=5,则第三边c的范围是:2<c<8.则三角形的周长l的范围是:10<l<16,∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.故满足条件的只有A.故选:A.3.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m ﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.4.【解答】解:A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B.5.【解答】解:根据题意,知,[来源:学&科&网Z&X&X&K],解方程得:m=2.故选:B.6.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.7.【解答】解:x2﹣2x﹣3=0,[来源:Z#xx#]移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x ﹣1)2=4.故选:B.8.【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x+3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.9.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选:B.10.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,[来源:学.科.网Z.X.X.K]∴BE=CD=6,∵AE为⊙O的直径,∴∠AB E=90°,∴AB===8,故选:B.11.【解答】解:∵Rt△ABC的直角边AC=BC=4cm,∴斜边AB=4cm,∴斜边AB上的中线与高重合,长度为:2cm,∵2,即2<3,∴这个圆与斜边AB所在直线的位置关系是相交,故选:A.12.【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.二、填空题:13.【解答】解:x2﹣12x+20=0,(x﹣2)(x﹣10)=0,x﹣2=0,x﹣10=0,解得:x1=2,x2=10,①x=2时,三角形的三边为8、6、2,∵2+6=8,∴不符合三角形三边关系定理,此时不行;②x=10时,三角形的三边为8、6、10,此时符合三角形三边关系定理,三角形的周长是6+8+10=24,故答案为:24.14.【解答】解:中间一项为加上或减去x和4积的2倍,故﹣2(m+1)=±8,解得m=3或﹣5,故答案为:3或﹣5.15.【解答】解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=﹣220%(舍去)故答案为:20%.16.【解答】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,mn=﹣7,∴m2﹣2mn+n2=(m+n)2﹣4mn=(﹣2)2﹣4×(﹣7)=32.故答案为:32.17.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,[来源:学*科*网] ∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.18.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根,∴△=b2﹣4ac≥0,即:4﹣4k≥0,解得:k≤1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故答案为:k≤1且k≠0.19.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.20.【解答】解:设方程的另一个根为x,则由根与系数的关系得:x+1=﹣,x•1=,解得:x=﹣1,a=0,故答案为:0;﹣1.21.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.22.【解答】解:设平均每次的降价率为x,由题意,得7200(1﹣x)2=3000.故答案为7200(1﹣x)2=3000.三、解答题:23.【解答】解:设方程的另一个根为x1,则x1+2=6,2x1=p2﹣2p+5,解得x1=4,p2﹣2p﹣3=0,∴p=3或﹣1.24.【解答】解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.[来源:学科网]25.【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S 菱形ABFC=8.∴S半圆=•π•42=8π.26.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.27.【解答】解:(1)设家庭电动自行车拥有量的年平均增长率为x,则125(1+x)2=180,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)∴180(1+20%)=216(辆),答:该小区到2017年底家庭电动自行车将达到216辆;(2)设该小区可建室内车位a个,露天车位b个,则,由①得b=150﹣5a,代入②得20≤a≤,∵a是正整数,∴a=20或21,当a=20时b=50,当a=21时b=45.∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个。
江苏省南京市江宁区湖熟片2024年九年级数学第一学期开学综合测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是()A .()3,5-B .()3,5-C .()3,5D .()3,5--2、(4分)如图,在ABC 中,CD AB ⊥于点D ,且E 是AC 的中点,若65AD DE ==,,则CD 的长等于()A .5B .6C .7D .83、(4分)小刚家院子里的四棵小树E,F,G,H 刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 上种满小草,则这块草地的形状是()A .平行四边形B .矩形C .正方形D .梯形4、(4分)已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1211+x x 的值为()A .2B .-1C .-12D .-25、(4分)若分式2242x x x ---的值为零,则x 的值是()A .2或-2B .2C .-2D .46、(4分)如图,在矩形ABCD 中,,,将其折叠使AB 落在对角线AC 上,得到折痕AE,那么BE 的长度为A .B .C .D .7、(4分)已知:如图,折叠矩形ABCD ,使点B 落在对角线AC 上的点F 处,若BC =8,AB =6,则线段CE 的长度是()A .3B .4C .5D .68、(4分)如图,在平行四边形ABCD 中,BC =10,AC =14,BD =8,则△BOC 的周长是()A .21B .22C .25D .32二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为_____.10、(4分)=_____;||=_____.11、(4分)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)12、(4分)若不等式组13220x x x a +⎧-≥⎪⎨⎪-≤⎩无解,则a 的取值范围是___.13、(4分)如图,平行四边形ABCD 的对角线相交于点O ,且OM AC ⊥,平行四边形ABCD 的周长为8,则CDM ∆的周长为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,点A 的坐标为(﹣,0),点B 的坐标为(0,3).(1)求过A,B 两点直线的函数表达式;(2)过B 点作直线BP 与x 轴交于点P,且使OP=2OA,求△ABP 的面积.15、(8分)如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为()3,4-,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM (1)菱形ABCO 的边长是________;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 以2个单位长度/秒的速度向终点C 匀速运动,设PMB △的面积为(S 0)S ≠,点P 的运动时间为t 秒,求S 与t 之间的函数关系式.16、(8分)已知△ABC,AB=AC,D 为BC 上一点,E 为AC 上一点,AD=AE.(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=°.(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=°,∠CDE=°.(3)设∠BAD=α,∠CDE=β猜想α,β之间的关系式,并说明理由.17、(10分)如图,在△ABC 中,AC =BC ,∠C =90°,D 是BC 上的一点,且BD CD .(1)尺规作图:过点D 作AB 的垂线,交AB 于点F ;(2)连接AD ,求证:AD 是△ABC 的角平分线.18、(10分)关于x 的一元二次方程x 1-x +p -1=0有两个实数根x 1、x 1.(1)求p 的取值范围;(1)若221122(2)(2)9x x x x ----=,求p 的值.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知反比例函数y=k x (k≠0)的图象在第二、四象限,则k 的值可以是:____(写出一个满足条件的k 的值).20、(4分)分解因式:225ax a -=____________21、(4分)矩形、菱形和正方形的对角线都具有的性质是_____.22、(4分)如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.23、(4分)从1、2、3、4这四个数中一次随机地取两个数,则其中一个数是另一个数两倍的概率是.二、解答题(本大题共3个小题,共30分)24、(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5t B <组:0.51t C < 组:1 1.5t D < 组: 1.5t请根据上述信息解答下列问题:(1)C 组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.25、(10分)如图,函数y =﹣2x+3与y =﹣12x+m 的图象交于P (n ,﹣2).(1)求出m 、n 的值;(2)求出△ABP 的面积.26、(12分)如图分别是64 的网格,网格中每个小正方形的边长均为1,线段AB 的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:(1)在下图中画一个以线段AB 为一边的直角ABC △,且ABC △的面积为2;(2)在下图中画一个以线段AB 为一边的四边形ABDE ,使四边形ABDE 是中心对称图形且四边形ABDE 的面积为1.连接AD ,请直接写出线段AD 的长.线段AD 的长是________参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选C.点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.2、D【解析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=12AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得=8.故选D此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值3、A【解析】试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.考点:1.平行四边形的判定;2.三角形中位线定理.4、D 【解析】由题意得,12221x x -+=-=,12111x x -⋅==-,∴1211x x +=1212221x x x x +==-⋅-.故选D.点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a+=-,12c x x a ⋅=.5、C 【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【详解】x 2-4=0,x=±2,同时分母不为0,∴x=﹣26、C 【解析】根据对称性可知:BE=FE,∠AFE=∠ABF=90°,又因为∠C=∠C,所以ΔCEF∽ΔCAB,根据相似性可得出:,BE=EF=,在ΔABC 中,由勾股定理可求得AC 的值,AB=1,CE=2-BE,将这些值代入该公式求出BE 的值.【详解】解:设BE 的长为x,则BE=FE=x、CE=2-x,在Rt△ABC 中,AC==,∵∠FCE=∠BCA,∠AFE=∠ABE=90°,∴△CEF∽△CAB(两对对应角相等的两三角形相似),∴∴BE=EF==×1,x=,∴BE=x=,故选:C.本题主要考查图形的展开与折叠和矩形的性质,同时学生们还要把握勾股定理和相似三角形的性质知识点.7、C 【解析】在Rt △ABC 中利用勾股定理可求出AC =1,设BE =a ,则CE =8﹣a ,根据折叠的性质可得出BE =FE =a ,AF =AB =6,∠AFE =∠B =90°,进而可得出FC =2,在Rt △CEF 中,利用勾股定理可得出关于a 的一元二次方程,解之即可得出a 值,将其代入8﹣a 中即可得出线段CE 的长度.【详解】解:在Rt △ABC 中,AB =6,BC =8,∴AC =1.设BE =a ,则CE =8﹣a ,根据翻折的性质可知,BE =FE =a ,AF =AB =6,∠AFE =∠B =90°,∴FC =2.在Rt △CEF 中,EF =a ,CE =8﹣a ,CF =2,∴CE 2=EF 2+CF 2,即(8﹣a )2=a 2+22,解得:a =3,∴8﹣a =3.故选:C .本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt △CEF 中,利用8、A【解析】由平行四边形的性质得出OA=OC=7,OB=OD=4,即可得出△BOC的周长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=7,OB=OD=4,∴△BOC的周长=OB+OC+BC=4+7+10=21;故选:A.本题考查了平行四边形的性质以及三角形周长的计算;熟记平行四边形的对角线互相平分是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、140°【解析】如图,连接BD,∵点E、F分别是边AB、AD的中点,∴EF是△ABD的中位线,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.【解析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【详解】=,|-|==2,,.本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.11、①③④【解析】根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确,综上可得①③④正确.12、a<1.【解析】解出不等式组含a的解集,与已知不等式组1322xxx a+⎧-≥⎪⎨⎪-≤⎩无解比较,可求出a的取值范围.【详解】解不等式3x﹣2≥12x+,得:x≥1,解不等式x﹣a≤0,得:x≤a,∵不等式组无解,∴a<1,此题考查解一元一次不等式组,解题关键在于掌握运算法则13、4【解析】⊥,根据线段垂直平分线的性质,可由平行四边形ABCD的对角线相交于点O,OM AC得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形∴OB=OD,AB=CD,AD=BC∵平行四边形ABCD的周长为8∴AD+CD=4⊥∵OM AC∴AM=CM∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.故答案为:4本题主要考查了平行四边形的性质,线段垂直平分线的性质。
掌门1对1教育初中数学2014-2015学年度第一学期期中学业水平检测2014.11九年级数学试卷(满分120 分时间120分钟)一、选择题(每题2分,共16分)1.一元二次方程x2-2x-1=0的根的情况为(▲)A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是(▲)A.众数是80 B.极差是15 C.平均数是80 D.中位数是753.如图,AB是半圆的直径,点D是弧AC的中点, ∠ABC=50°,则∠DAB等于(▲)A.55°B.60°C.65°D.70°4.将方程x2+4x+2=0配方后,原方程变形为(▲)A.(x+4)2=2 B.(x+2)2=2 C.(x+4)2=-3 D.(x+2)2=-55.在平面直角坐标系中,以点(3,2)为圆心,3为半径的圆,一定(▲)A. 与x轴相切,与y轴相切B. 与x轴相切,与y轴相交C. 与x轴相交,与y轴相切D. 与x轴相交,与y轴相交6.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(▲)A.40°B.50°C.60°D.70°7.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译,若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是(▲)A . 35B.710C.310D.1625第3题图第8题图第6题图8.如图,∠ACB =60°,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( ▲ ) A . 4 B . 2π C . 4π D . 2 3二、填空题(每题2分,共20分) 9. 方程x 2﹣3x =0的根为 ▲ .10.小明某学期的数学平时成绩为72分,期中考试为78分,期末成绩为85分,计算学期总评成绩的方法是:平时︰期中︰期末=3︰3︰4,则小明的总评成绩是 ▲ . 11.已知圆锥的底面半径为3,母线为8,则圆锥的侧面积等于 ▲ .12.如图,随机闭合开关S 1,S 2,S 3中的两个,则能让灯泡发光的概率为 ▲ . 13.已知一元二次方程x 2 -5x -1=0的两根为x 1,x 2,则x 1+x 2= ▲ .14.如图,以点P 为圆心,以2 5 为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为 (2,0),点B 的坐标为(6,0),则圆心P 的坐标为 ▲ . 15.已知正六边形的半径是4,则这个正六边形的周长为 ▲ .16.某药品原价每盒25元,.经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是 ▲ .17.如图,PA ,PB 分别切⊙O 于点A 、B ,点C 在⊙O 上,且∠ACB=50°,则∠P= ▲ .18.如图,在Rt △ABC 中,∠C =90O ,AC =4,BC =2,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为▲ .(结果保留π)三、解答题(共84分)第14题图第12题图第18题图第17题图19.(本题10分)解下列方程: (1) x 2+4x -1=0(2) (x +4)2=5(x +4)20.(本题7分)关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根为0,求出a 的值和方程的另一个根.21.(本题7分)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心...............D .点的位置....,并写出D 点的坐标为 ▲ ; (2)连接AD 、CD ,⊙D 的半径为 ▲ ,∠ADC 的度数为 ▲ ; (3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.22.(本题8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下: 甲 95 82 88 81 93 79 84 78 乙8392809590808575(1)请你计算这两组数据的平均数,中位数和方差;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.23.(本题8分)已知在Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,以AD 为弦作⊙O ,使圆心O 在AB 上.(1)用直尺和圆规在图中作出⊙O (不写作法,保留作图痕迹) ; (2)求证:BC 为⊙O 的切线.24.(本题8分)袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.这个游戏规则对双方公平吗?请说明理由.若不公平,请改变游戏规则使游戏公平.DCBA25.(本题8分)阅读下面的例题:解方程x2-∣x∣-2=0解:当x≥0时,原方程化为x2-x-2=0,解得:x1=2,x2=-1(不合题意,舍去);当x<0时,原方程化为x2+ x-2=0,解得:x1=1,(不合题意,舍去)x2=-2;∴原方程的根是x1=2,x2=-2.请参照例题解方程x2-∣x-1∣-1=026.(本题8分)如图所示,AB是圆O的一条弦,OD⊥AB,垂足为C,交圆O于点D,点E在圆O 上.(1)若∠AOD=52O,求∠DEB的度数;(2)若AC=7 ,CD=1,求圆O的半径.27.(本题8分)临近端午节,某食品店每天卖出300只粽子,卖出一只粽子的利润为1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获得的利润更多,该店决定把零售单价下降m(0<m<1)元,(1)零售单价降价后,每只利润为▲元,该店每天可售出▲只粽子.(2)在不考虑其他因素的条件下,当零售单价下降多少元时,才能使该店每天获取的利润是420元,且.卖出的粽子更多.......?28.(本题12分)翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此小菲同学结合某市数学中考卷的倒数第二题对这类问题进行了专门的研究。
2015年江苏省南京市江宁区湖熟片九年级上学期苏科版数学第二次月考试卷一、选择题(共6小题;共30分)1. 一元二次方程x2−2x−1=0的根的情况为 A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根2. 如图,AB是⊙O的直径,点C在⊙O上,若∠A=40∘,则∠B的度数为 A. 80∘B. 60∘C. 50∘D. 40∘3. 用配方法解方程x2−2x−5=0时,原方程应变形为 A. x+12=6B. x+22=9C. x−12=6D. x−22=94. 下列说法:①直径不是弦;②相等的弦所对的弧相等;③三角形的外心是三角形中三边垂直平分线的交点;④三角形的外心到三角形各边的距离相等.其中正确的个数有 A. 1个B. 2个C. 3个D. 4个5. 某县为发展教育事业,加强了对教育经费的投入,2010 年投入2000万元,预计到2012年共投入8000万元.设教育经费的年平均增长率为x,下面所列方程正确的是 A. 20001+x2=8000B. 20001+x+20001+x2=8000C. 2000x2=8000D. 2000+20001+x+20001+x2=80006. 如图,AB是⊙O的直径,弦CD⊥AB,CD=10,AP:PB=5:1,⊙O的半径是 A. 6B. 55C. 8D. 35二、填空题(共10小题;共50分)7. 一元二次方程x2=3x的解是______.8. 若实数a是方程x2−2x+1=0的一个根,则2a2−4a+5= ______.9. 一元二次方程x2−3x+1=0的两根为x1,x2,则x1+x2−x1⋅x2= ______.10. 小芳的衣服被一根铁钉划了一个呈直角三角形的洞,只知道该三角形有两边长分别为1 cm和2 cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于______.11. 写出一个以−3和7为根且二次项系数为1的一元二次方程______.12. 若关于x的一元二次方程kx2−2x+1=0有实数根,则k的取值范围是______.13. 如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105∘,则∠DCE的大小是______.14. 将半径为2 cm,圆心角为120∘的扇形围成一个圆锥的侧面,这个圆锥的底面半径为______ cm.15. 如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF= ______.16. 如图,⊙O的半径为3 cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为______ s时,BP与⊙O相切.三、解答题(共11小题;共143分)17. 解方程:(1)2x2−5x+2=0.(2)2x+32=x+3.18. (1)化简:32+∣1−2∣−12−1.(2)解不等式组:2x+7≤x+10, x+23>2−x.19. 计算或化简:(1)−+(2)先化简1x−1−1x+1÷x2x−2,然后从2,0,1,−1中选取一个你认为合适的数作为x的值代入求值.20. 如图,在平面直角坐标系中,一段圆弧经过格点A,B,C.(1)请写出该圆弧所在圆的圆心O的坐标______;(2)⊙O的半径为______(结果保留根号);(3)求ABC的长(结果保留π).21. 已知方程5x2+mx−10=0的一根是−5,求方程的另一根及m的值.22. 如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52∘,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.23. 如图,把长为40 cm,宽为30 cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm(纸板的厚度忽略不计).(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒子表面积是950 cm2,求此时长方体盒子的体积.24. 如图,在△ABC中,AC=BC,∠ACB=120∘.(1)求作⊙O,使:圆心O在AB上,且⊙O经过点A和点C(尺规作图,保留作图痕迹,不写作法)(2)判断BC与⊙O的位置关系,并说明理由.25. 某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件.为了扩大销售,商场决定采取适当降价的方式促销.经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?26. 已知,如图,AB,AC是⊙O的切线,B,C是切点,过BC上的任意一点P作⊙O的切线与AB,AC分别交于点D,E.(1)连接OD和OE,若∠A=50∘,求∠DOE的度数.(2)若AB=7,求△ADE的周长.27. 配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2−1≥−1,即:3a2−1就有最小值−1,只有当a=0时,才能得到这个式子的最小值−1.同样,因为−3a2≤0,所以−3a2+1≤1,即:−3a2+1就有最大值1,只有当a=0时,才能得到这个式的最大值1.(1)当x= ______ 时,代数式−2x+12−1有最______ 值(填“大”或“小”)值为______;(2)当x= ______ 时,代数式2x2+4x+1有最______ 值(填“大”或“小”)值为______;(3)矩形自行车场地ABCD一边靠墙(墙长10 m),在AB和BC边各开一个1米宽的小门(不用木板),现有总长14 m的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?答案第一部分1. B2. C3. C4. A5. D6. D第二部分7. 0,38. 39. 210. 5 cm或2 cm11. x2−4x−21=012. k≤1且k≠013. 105∘14. 2315. 516. 1 s或5 s;第三部分17. (1)2x2−5x+2=0.2x−1x−2=0.x−2=0,2x−1=0.解得x1=2,x2=12.(2)2x+32=x+3.2x+32−x+3=0.x+32x+6−1=0.x+3=0,2x+5=0.解得x1=−3;x2=−52.18. (1)原式=3+2−1−2=2 2.(2)2x+7≤x+10, ⋯⋯①x+23>2−x, ⋯⋯②由①得:x≤3,由②得:x>1,则不等式组的解集为1<x≤3.19. (1)原式=33−23+35=3+35.(2)原式=2x+1x−1⋅2x+1x−1x=4xx≠0,当x=2时,原式=2=22.20. (1)2,−1(2)25(3)过点D作DF⊥y轴于点F,过点C作CG⊥x轴交FD的延长线于点G,∵DF=CG=2,∠AFD=∠DGC=90∘,AF=DG=4,在△AFD和△DGC中,DF=CG,∠AFD=∠DGC,AF=DG,∴△AFD≌△DGC SAS,∴∠ADF=∠DCG,∵∠DCG+∠CDG=90∘,∴∠ADF+∠CDG=90∘,即∠ADC=90∘,则ABC的长l=90π×25180=5π.21. 设方程的另一个根为t,根据题意得−5+t=−m5,−5t=−2,解得t=25,则m=25−5t=23,即m的值为23,方程的另一根为25.22. (1)∵AB是⊙O的一条弦,OD⊥AB,∴AD=DB,∴∠DEB=12∠AOD=12×52∘=26∘;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC= OA2−OC2=52−32=4,则AB=2AC=8.23. (1)长方体盒子的长是:30−2x cm;长方体盒子的宽是40−2x÷2=20−x cm;长方体盒子的高是x cm.(2)根据图示,根据阴影部分的面积=长方形硬纸板的面积−长方体表面积.可得2x2+ 20x=30×40−950,解得x1=5,x2=−25(不合题意,舍去),长方体盒子的体积V=30−2×5×5×20−5=20×5×15=1500 cm3.答:此时长方体盒子的体积1500 cm3.24. (1)如图,⊙O为所求作:(2)BC与⊙O相切.理由如下:连接OC,如图,∵AC=BC,∠ACB=120∘,∴∠A=∠B=30∘,∵OA=OC,∴∠OCA=∠A=30∘,∴∠OCB=∠ACB−∠OCA=120∘−30∘=90∘,∴OC⊥BC,∵OC是半径,∴BC与⊙O相切.25. (1)360−280×60=4800(元)∴降价前商场每月销售该商品的利润是4800元.(2)设每件商品应降价x元,360−280−x60+5x=7200化简得x2−68x+480=0解得x1=8,x2=60∵要减少库存,∴每件应降价60元.26. (1)连接OB,OC,OD,OP,OE,∵AB,AC,DE分别与⊙O相切,OB,OC,OP是⊙O的半径,∴OB⊥AB,OC⊥AC,OP⊥DE,DB=DP,EP=EC,AB=AC,∴∠OBA=∠OCA=90∘,∵∠A=50∘,∴∠BOC=360∘−90∘−90∘−50∘=130∘,∵OB⊥AB,OP⊥DE,DB=DP,∴OD平分∠BOP,同理得:OE平分∠POC,∴∠DOE=∠DOP+∠EOP=12∠BOP+∠POC=12∠BOC=65∘.(2)∵DB=DP,EP=EC,AB=AC,∴△ADE 的周长=AD+DE+AE=AD+DP+EP+AE=AD+BD+AE+EC=AB+AC=2AB=14.27. (1)−1;大;−1(2)−1;小;−1(3)设AD=x,S=x16−2x=−2x−42+32,当AD=4 m时,面积最大值为32 m2.。
2014-2015学年江苏省南京市江宁区湖熟片九年级(上)月考数学试卷(10月份)一、选择题(每小题2分,共12分)1.(2分)下列方程中是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2+1=0 D.x2=1 2.(2分)用配方法将方程x2﹣6x+7=0变形,结果正确的是()A.(x﹣3)2+4=0 B.(x﹣3)2﹣2=0 C.(x﹣3)2+2=0 D.(x+3)2+4=03.(2分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()x 3.23 3.24 3.253.26ax2+bx+c﹣0.06﹣0.020.030.09A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x <3.264.(2分)如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相离B.相交C.相切D.不能确定5.(2分)一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是()A.①B.③C.②D.④6.(2分)关于x的一元二次方程a(x+3)2+3=0的解的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定二、填空题(每小题2分,共20分)7.(2分)方程x2=x的解是.8.(2分)写出一个一元二次方程使它的根为1,2,则这个方程可以为.9.(2分)已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=.10.(2分)如果一元二次方程x2+2x+a=0有两个不等实根,则实数a的取值范围是.11.(2分)如图,AB是⊙O的一条弦,AB=6,圆心O到AB的距离为4,则⊙O 的半径为.12.(2分)如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=.13.(2分)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是.14.(2分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C,CD与AB的延长线相交于点D,∠CAD=20°,则∠D=°.15.(2分)如图,已知AB是⊙O的直径,C、D是⊙O上两点、且∠D=130°,则∠BAC的度数是度.16.(2分)已知AB是⊙O的一条弦,在圆上找一点C,使得△ABC为等腰三角形.有满足条件的点C共有个.三、解答题(本大题共10小题,共88分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(14分)(1)解方程:x2﹣4x﹣1=0(配方法);(2)解方程:x+3﹣x(x+3)=0;(3)请运用解一元二次方程的思想方法解方程:x3﹣4x=0.18.(8分)某商场将某种商品的售价从原来每件40元经两次调价后调至每件32.4元,(1)若该商场两次调价的百分率相同,求这个百分率.(2)经调查,该商品每降价0.2元,即可多售10件,若该商品原来每月可售500件,求第一次调价后可售多少件?19.(7分)已知关于x的一元二次方程x2﹣6x+m2﹣3m﹣5=0的一个根是﹣1,求m的值及方程的另一个根.20.(7分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?21.(7分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.22.(7分)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点.(直接写出结论)23.(9分)如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P.(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)(2)点D在⊙O上吗?说明理由;(3)试说明:AC平分∠BAD.24.(6分)如图,=,D、E分别是半径OA和OB的中点,试判断CD与CE 的大小关系,并说明理由.25.(7分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(8分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.四、解答题(共1小题,满分0分)27.如图,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F作FG∥BC交AB于点G,求证:FG+CD=BD.小方同学在解答此题时,利用了上述结论,她的方法如下:连接CF并延长,交AB于点M,∵△ABC的高AD与高BE相交于点F,∴CM为△ABC的高.(请你写出小方没完成的证明过程.)五、解答题(共1小题,满分0分)28.如图,AB是圆的直径,点C在圆内,请仅用无刻度的直尺画出△ABC中AB 边上的高.(不写画法)2014-2015学年江苏省南京市江宁区湖熟片九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每小题2分,共12分)1.(2分)下列方程中是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2+1=0 D.x2=1【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【解答】解:A、2x+1=0未知数的最高次数是1,故错误;B、y2+x=1含有两个未知数,故错误;C、x2+1=0是一元二次方程,正确;D、是分式方程,故错误.故选:C.【点评】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.(2分)用配方法将方程x2﹣6x+7=0变形,结果正确的是()A.(x﹣3)2+4=0 B.(x﹣3)2﹣2=0 C.(x﹣3)2+2=0 D.(x+3)2+4=0【分析】首先进行移项,再在方程左右两边同时加上一次项系数一半的平方9,即可变形为左边是完全平方式,右边是常数的形式.【解答】解:∵x2﹣6x+7=0∴x2﹣6x=﹣7∴x2﹣6x+9=﹣7+9∴(x﹣3)2=2∴(x﹣3)2﹣2=0故选:B.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.(2分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()x 3.23 3.24 3.253.26ax2+bx+c﹣0.06﹣0.020.030.09A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x <3.26【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.【解答】解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即3.24<x<3.25.故选:C.【点评】掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.4.(2分)如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相离B.相交C.相切D.不能确定【分析】欲求圆与AB的位置关系,关键是求出点C到AB的距离d,再与半径r2.5cm进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵圆的半径是8cm,圆心到直线的距离也是8cm,∴直线与圆相切.故选:C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.5.(2分)一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是()A.①B.③C.②D.④【分析】要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.【解答】解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:C.【点评】本题考查了垂径定理的应用,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.6.(2分)关于x的一元二次方程a(x+3)2+3=0的解的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】通过移项得到:a(x+3)2=﹣3,根据非负数的情况进行解答.【解答】解:由原方程,得a(x+3)2=﹣3,当a>0时,(x+3)2<0,该方程无解;当a<0时,该方程为(x+3)2=﹣,有2个解.综上所述,原方程的解的情况无法确定.故选:D.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b ≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.二、填空题(每小题2分,共20分)7.(2分)方程x2=x的解是x1=0,x2=1.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.8.(2分)写出一个一元二次方程使它的根为1,2,则这个方程可以为(x﹣1)(x﹣2)=0.【分析】由一个一元二次方程使它的根为1,2,根据方程根的定义,即可求得答案.【解答】解:∵一元二次方程使它的根为1,2,∴(x﹣1)(x﹣2)=0.故答案为:(x﹣1)(x﹣2)=0.【点评】此题考查了方程根的意义.注意若方程有两根分别为x1,x2,则可得其中符合条件的方程为:(x﹣x1)(x﹣x2)=0.9.(2分)已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=﹣2.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:设方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=即可得到答案.【解答】解:∵一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,∴x1•x2==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:设方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.10.(2分)如果一元二次方程x2+2x+a=0有两个不等实根,则实数a的取值范围是a<1.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac意义,由题意得△>0,可得关于a的不等式22﹣4a>0,解不等式可得答案.【解答】解:∵方程x2+2x+a=0有两个不等实根,∴△=22﹣4a>0,解得:a<1,故答案为:a<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(2分)如图,AB是⊙O的一条弦,AB=6,圆心O到AB的距离为4,则⊙O 的半径为5.【分析】连接OA,先根据垂径定理求出AD的长,再根据勾股定理即可得出OA 的长.【解答】解:连接OA,∵AB=6,OD⊥AB,圆心O到AB的距离为4,∴AD=AB=3,∴OA===5.故答案为:5.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.(2分)如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=30°.【分析】由∠ACB是⊙O的圆周角,∠AOB是圆心角,且∠AOB=60°,根据圆周角定理,即可求得圆周角∠ACB的度数.【解答】解:如图,∵∠AOB=60°,∴∠ACB=∠AOB=30°.故答案是:30°.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.13.(2分)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是.【分析】在网格中找点A、B、D(如图),作AB,BD的中垂线,交点O就是圆心,故OA即为此圆的半径,根据勾股定理求出OA的长即可.【解答】解:如图所示,如图所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,∵AC=1,OC=2,∴OA===.故答案为:.【点评】本题考查的是垂径定理在实际生活中的运用,根据题意构造出直角三角形是解答此题的关键.14.(2分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C,CD与AB的延长线相交于点D,∠CAD=20°,则∠D=50°.【分析】连接OC,可得∠OCD=90°,OA=OC,然后可得∠A=∠OCA=20°,然后根据三角形的内角和定理可求得∠D的度数.【解答】解:连接OC,∴OA=OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠D=180°﹣∠A﹣∠ACO﹣∠OCD=180°﹣20°﹣20°﹣90°=50°.故答案为:50.【点评】本题考查了切线的性质,解答本题的关键是掌握切线的性质和三角形的内角和定理.15.(2分)如图,已知AB是⊙O的直径,C、D是⊙O上两点、且∠D=130°,则∠BAC的度数是40度.【分析】根据圆周角定理,由AB是⊙O的直径,可证∠ACB=90°,由圆内接四边形的对角互补可求∠B=180°﹣∠D=50°,即可求∠BAC=90°﹣∠B=40°.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=180°﹣∠D=50°,∴∠BAC=90°﹣∠B=40°.【点评】本题利用了圆内接四边形的性质,直径对的圆周角是直角,直角三角形的性质求解.16.(2分)已知AB是⊙O的一条弦,在圆上找一点C,使得△ABC为等腰三角形.有满足条件的点C共有4个.【分析】根据垂径定理和等腰三角形的性质作出符合条件的点,即可得到答案.【解答】解:如图所示,满足条件的点C共有4个.故答案为:4.【点评】本题考查的是垂径定理和等腰三角形的性质,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键,注意分情况讨论思想的应用.三、解答题(本大题共10小题,共88分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(14分)(1)解方程:x2﹣4x﹣1=0(配方法);(2)解方程:x+3﹣x(x+3)=0;(3)请运用解一元二次方程的思想方法解方程:x3﹣4x=0.【分析】(1)先移项,再方程两边同加上一次项系数一半的平方,再直接开平方即可;(2)先提公因式,得出两个一元一次方程,求解即可;(3)先提公因式,再用因式分解(平方差公式),转化成三个一元一次方程,求解即可.【解答】解:(1)x2﹣4x=1x2﹣4x+4=5(x﹣2)2=5,x﹣2=±,x1=2+x2=2﹣;(2)原方程可变形为(x+3)﹣x(x+3)=0,(x+3))(1﹣x)=0,x+3=0,或1x=0.∴x1=﹣3,x2=1;(3)解:原方程可变形为x(x2﹣4)=0,x(x+2)(x﹣2)=0,x=0,或x+2=0,或x﹣2=0,∴x1=0,x2=﹣2,x3=2.【点评】本题考查了解一元一次方程﹣配方法,公式法,因式分解法,掌握每种方法的步骤是解题的关键.18.(8分)某商场将某种商品的售价从原来每件40元经两次调价后调至每件32.4元,(1)若该商场两次调价的百分率相同,求这个百分率.(2)经调查,该商品每降价0.2元,即可多售10件,若该商品原来每月可售500件,求第一次调价后可售多少件?【分析】(1)设调价百分率为x,根据售价从原来每件40元经两次调价后调至每件32.4元,可列方程求解.(2)根据第一问的条件求出第一次降价多少,从而求出多售出多少,从而得到答案.【解答】解:(1)设调价百分率为x,列方程:40(1﹣x)2=32.4解得x1=0.1,x2=1.9(不合题意舍去).故每次降价10%.(2)500+10×40×(0.1÷0.2)=700 (件).第一次调价后可售出700件.【点评】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解,然后根据该商品每降价0.2元,即可多售10件,从而求出售出的总件数.19.(7分)已知关于x的一元二次方程x2﹣6x+m2﹣3m﹣5=0的一个根是﹣1,求m的值及方程的另一个根.【分析】根据一元二次方程的解的定义,将x=﹣1代入关于x的一元二次方程x2﹣6x+m2﹣3m﹣5=0=0,求得m的值;利用根与系数的关系求得方程的另一根.【解答】解:设方程的另一根为x2.∵关于x的一元二次方程x2﹣6x+m2﹣3m﹣5=0的一个根是﹣1,∴x=﹣1满足关于x的一元二次方程x2﹣6x+m2﹣3m﹣5=0,∴(﹣1)2﹣6×(﹣1)+m2﹣3m﹣5=0,即m2﹣3m+2=0,∴(m﹣1)(m﹣2)=0,解得,m=1或m=2;又由韦达定理知﹣1+x2=6,解得,x2=7.即方程的另一根是7.【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.20.(7分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?【分析】本题可设无盖长方体箱子宽为x米,则长为(x+2)米,根据刚好能围成一个容积为15米3的无盖长方体箱子,结合图形可列出方程,求出答案.【解答】解:设长方体箱子宽为x米,则长为(x+2)米.依题意,有x(x+2)×1=15.整理,得x2+2x﹣15=0,解得x1=﹣5(舍去),x2=3,∴这种运动箱底部长为5米,宽为3米.由长方体展开图可知,所购买矩形铁皮面积为(5+2)×(3+2)=35∴做一个这样的运动箱要花35×20=700(元).答:张大叔购回这张矩形铁皮共花了700元【点评】题目考查的知识点比较多,但难度不大,同学应注意的是所求问题用到的是长方体的表面积,即表面展开图的面积,并非体积.21.(7分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根据勾股定理求出BD即可.【解答】解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=2﹣2.【点评】本题考查了切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力.22.(7分)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点.(直接写出结论)【分析】(1)连接AD;由圆周角定理可得AD⊥BC,又D是BC的中点,因此AD 是BC的垂直平分线,由此可得出AB=AC的结论.(2)若E是AC的中点,那么连接BE后,同(1)可证得AB=BC;由(1)知:AB=AC,那么此时AB=AC=BC,即△ABC是等边三角形.可根据这个结论来添加条件.【解答】解:(1)AB=AC.证法一:连接AD,则AD⊥BC.∵AD为公共边,BD=DC,∴Rt△ABD≌Rt△ACD.∴AB=AC.证法二:连接AD,则AD⊥BC.又BD=DC,∴AD是线段BD的中垂线.∴AB=AC.(2)△ABC为正三角形,或AB=BC,或AC=BC,或∠A=∠B,或∠A=∠C.【点评】本题考查了圆周角定理、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定等知识.23.(9分)如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P.(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)(2)点D在⊙O上吗?说明理由;(3)试说明:AC平分∠BAD.【分析】(1)作AB和BC的垂直平分线,两垂直平分线相交于点O,以OB为半径作⊙O即可;(2)连结OD,先判断AC是⊙O的直径,而∠ADB=90°,根据直角三角形斜边上的中线性质得OD=AC,即OD=OA,于是根据点与圆的位置关系可判断点D 在⊙O上;(3)由于AC是⊙O的直径,BD⊥AC,根据垂径定理得BC=CD,则=,然后根据圆周角定理可得∠BAC=∠DAC.【解答】解:(1)如图,⊙O为所作;(2)点D在⊙O上.理由如下:连结OD,∵∠ABC=90°,∴AC是⊙O的直径,∵∠ADB=90°,∴OD=AC,即OD=OA,∴点D在⊙O上;(3)∵AC是⊙O的直径,BD⊥AC,∴BC=CD,∴=∴∠BAC=∠DAC,∴AC平分∠BAD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.24.(6分)如图,=,D、E分别是半径OA和OB的中点,试判断CD与CE 的大小关系,并说明理由.【分析】首先连接OC,由=,根据弧与圆心角的关系,可得∠COD=∠COE,又由D、E分别是半径OA和OB的中点,可得OD=OE,则可利用SAS,判定△COD ≌△COE,继而证得结论.【解答】解:CD=CE.理由:连接OC,∵D、E分别是OA、OB的中点,∴OD=OA,OE=OC,∵OA=OB,∴OD=OE,又∵AC=BC,∴∠DOC=∠EOC,在△OCD和△OCE中,,∴△CDO≌△CEO(SAS),∴CD=CE.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质.注意准确作出辅助线,并证得△COD≌△COE是关键.25.(7分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.【点评】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.26.(8分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5﹣x)2+(6﹣x)2=25,从而求得x的值,由勾股定理得出AB的长.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【点评】本题考查了切线的判定和性质、勾股定理、矩形的判定和性质以及垂径定理,是基础知识要熟练掌握.四、解答题(共1小题,满分0分)27.如图,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F作FG∥BC交AB于点G,求证:FG+CD=BD.小方同学在解答此题时,利用了上述结论,她的方法如下:连接CF并延长,交AB于点M,∵△ABC的高AD与高BE相交于点F,∴CM为△ABC的高.(请你写出小方没完成的证明过程.)【分析】首先根据等腰直角三角形的性质得出AD=BD,再在Rt△BCM中,∠MBC=45°,进而得出CD=DF,AF=FG,即可得出答案.【解答】证明:如图,连接CF并延长,交AB于点M,在Rt△ADB中,AD=BD,∵在Rt△BCM中,∠MBC=45°,∴∠BCM=45°,即∠DCF=45°,∴在Rt△CFD中,CD=DF,∵FG∥BC,∴∠AGF=∠ABC=45°,∴在Rt△AFG中,AF=FG,∴FG+CD=AF+DF=AD=BD.【点评】此题主要考查了等腰直角三角形的性质的知识,根据Rt△ADB得出AD=BD是解题关键.五、解答题(共1小题,满分0分)28.如图,AB是圆的直径,点C在圆内,请仅用无刻度的直尺画出△ABC中AB 边上的高.(不写画法)【分析】分别延长AC和BC交圆于D、E,再分别延长AE和BD,它们相交于点F,然后延长FC交AB于H,利用圆周角定义和三角形三条高所在直线相交于一点可判断CH⊥AB.【解答】解:如图,CH为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.利用三角形三条高线相交于点找到解决问题的方法.。
苏教版九年级数学上册第一次月考试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12- C .12 D .2 2.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2 B .2 C .−4 D .43.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.计算:205-=__________.2.因式分解:_____________.3.已知a、b为两个连续的整数,且28a b<<,则+a b=________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .4.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、B6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、52、3、114、8.5、12.6、5 1三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)证明见解析(2)1或23、答案略4、(1)略;(2)3.5、(1)200、81°;(2)补图见解析;(3)1 36、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
2015-2016学年南京市江宁区湖熟片九年级(上)月考数学试卷(10月份)一、选择题(每题2分,共12分)1.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=94.下列说法:①直径不是弦;②相等的弦所对的弧相等;③三角形的外心是三角形中三边垂直平分线的交点;④三角形的外心到三角形各边的距离相等.其中正确的个数有( ) A.1个B.2个C.3个D.4个5.某县为发展教育事业,加强了对教育经费的投入,2010年投入2000万元,预计到2012年共投入8000万元.设教育经费的年平均增长率为x,下面所列方程正确的是( ) A.2000(1+x)2=8000B.2000(1+x)+2000(1+x)2=8000C.2000x2=8000D.2000+2000(1+x)+2000(1+x)2=80006.如图,AB是⊙O的直径,弦CD⊥AB,CD=10,AP:PB=5:1,⊙O的半径是( )A.6B.C.8D.二.填空题(每题2分,共20分)7.一元二次方程x2=3x的解是:__________.8.若实数a是方程x2﹣2x+1=0的一个根,则2a2﹣4a+5=__________.9.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1•x2=__________.10.小芳的衣服被一根铁钉划了一个呈直角三角形的洞,只知道该三角形有两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于__________.11.写出一个以﹣3和7为根且二次项系数为1的一元二次方程__________.12.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是__________.13.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是__________.14.将半径为2cm,圆心角为120°的扇形围成一个圆锥的侧面,这个圆锥的底面半径为__________cm.15.如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.16.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为__________s时,BP与⊙O相切.三、解答题(共11题,共88分)17.解方程:(1)2x2﹣5x+2=0.(2)2(x+3)2=x+3.18.(1)化简:()2+|1﹣|﹣()﹣1(2)解不等式组:.19.计算或化简:(1)﹣+;(2)先化简(﹣)÷,然后从,0,1,﹣1中选取一个你认为合适的数作为x的值代入求值.20.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(1)请写出该圆弧所在圆的圆心O的坐标__________;(2)⊙O的半径为__________(结果保留根号);(3)求的长(结果保留π).21.已知方程5x2+mx﹣10=0的一根是﹣5,求方程的另一根及m的值.22.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.23.如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.24.如图,在△ABC中,AC=BC,∠ACB=120°.(1)求作⊙O,使:圆心O在AB上,且⊙O经过点A和点C(尺规作图,保留作图痕迹,不写作法)(2)判断BC与⊙O的位置关系,并说明理由.25.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?26.已知,如图,AB、AC是⊙O得切线,B、C是切点,过上的任意一点P作⊙O的切线与AB、AC分别交于点D、E(1)连接OD和OE,若∠A=50°,求∠DOE的度数.(2)若AB=7,求△ADE的周长.27.配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2﹣1≥﹣1,即:3a2﹣1就有最小值﹣1.只有当a=0时,才能得到这个式子的最小值﹣1.同样,因为﹣3a2≤0.所以﹣3a2+1≤1,即:﹣3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=__________时,代数式﹣2(x+1)2﹣1有最__________值(填“大”或“小”值为__________.(2)当x=__________时,代数式2x2+4x+1有最__________值(填“大”或“小”)值为__________.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?2015-2016学年南京市江宁区湖熟片九年级(上)月考数学试卷(10月份)一、选择题(每题2分,共12分)1.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.专题:计算题.分析:先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.解答:解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°考点:圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠C=90°,又由直角三角形中两锐角互余,即可求得答案.解答:解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=40°,∴∠B=90°﹣∠A=50°.故选C.点评:此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意数形结合思想的应用,注意直径所对的圆周角是直角定理的应用.3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9考点:解一元二次方程-配方法.专题:方程思想.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.下列说法:①直径不是弦;②相等的弦所对的弧相等;③三角形的外心是三角形中三边垂直平分线的交点;④三角形的外心到三角形各边的距离相等.其中正确的个数有( ) A.1个B.2个C.3个D.4个考点:三角形的外接圆与外心;圆的认识;圆心角、弧、弦的关系.分析:利用圆的有关性质和三角形外接圆以及外心的性质以及圆心角、弧、弦的关系分析判断即可.解答:解:①直径不是弦,错误,直径是圆内最长弦;②相等的弦所对的弧相等,必须在同圆或等圆中,故此选项错误;③三角形的外心是三角形中三边垂直平分线的交点,正确;④三角形的外心到三角形各顶点的距离相等,故错误.故其中正确的个数有1个.故选:A.点评:此题主要考查了圆的有关性质和三角形外接圆以及外心的性质以及圆心角、弧、弦的关系等知识,熟练掌握相关定义是解题关键.5.某县为发展教育事业,加强了对教育经费的投入,2010年投入2000万元,预计到2012年共投入8000万元.设教育经费的年平均增长率为x,下面所列方程正确的是( ) A.2000(1+x)2=8000B.2000(1+x)+2000(1+x)2=8000C.2000x2=8000D.2000+2000(1+x)+2000(1+x)2=8000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2010年投入2000万元,预计2012年投入8000万元即可得出方程.解答:解:设教育经费的年平均增长率为x,则2011的教育经费为:2000×(1+x)万元,2012的教育经费为:3200×(1+x)2万元,那么可得方程:2000×(1+x)2=8000.故选A.点评:本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.6.如图,AB是⊙O的直径,弦CD⊥AB,CD=10,AP:PB=5:1,⊙O的半径是( )A.6B.C.8D.考点:垂径定理;勾股定理.分析:连接OC,根据AP:PB=5:1可设PB=x,AP=5x,故OC=OB==3x,故OP=2x,由垂径定理可求出PC的长,根据勾股定理求出x的值,进而可得出结论.解答:解:连接OC,∵AP:PB=5:1,∴设PB=x,AP=5x,∴OC=OB==3x,∴OP=2x.∵AB是⊙O的直径,弦CD⊥AB,CD=10,∴PC=5.∵PC2+OP2=OC2,即52+(2x)2=(3x)2,解得x=,∴OC=3x=3.故选D.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.填空题(每题2分,共20分)7.一元二次方程x2=3x的解是:x1=0,x2=3.考点:解一元二次方程-因式分解法.分析:利用因式分解法解方程.解答:解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.点评:本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.8.若实数a是方程x2﹣2x+1=0的一个根,则2a2﹣4a+5=3.考点:一元二次方程的解.分析:首先由已知可得a2﹣2a+1=0,即a2﹣2a=﹣1.然后化简代数式,注意整体代入,从而求得代数式的值.解答:解:∵实数a是方程x2﹣2x+1=0的一个根,∴a2﹣2a+1=0,即a2﹣2a=﹣1,∴2a2﹣4a+5=2(a2﹣2a)+5=2×(﹣1)+5=3.故答案为3.点评:本题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意解题中的整体代入思想.9.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1•x2=2.考点:根与系数的关系.专题:方程思想.分析:根据一元二次方程的根与系数的关系x1+x2=﹣\frac{b}{a},x1•x2=c求得x1+x2和x1•x2的值,然后将其代入所求的代数式求值即可.解答:解:∵一元二次方程x2﹣3x+1=0的二次项系数a=1,一次项系数b=﹣3,常数项c=1,∴由韦达定理,得x1+x2=3,x1•x2=1,∴x1+x2﹣x1•x2=3﹣1=2.故答案是:2.点评:本题考查了一元二次方程的根与系数的关系.解题时,务必弄清楚根与系数的关系x1+x2=﹣,x1•x2=c中的a、b、c所表示的意义.10.小芳的衣服被一根铁钉划了一个呈直角三角形的洞,只知道该三角形有两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于cm或2cm.考点:三角形的外接圆与外心;勾股定理.专题:应用题.分析:该圆应是三角形的外接圆,则其直径应是直角三角形的斜边.当2是斜边时,则直径即是2;当2是直角边时,则斜边是,即直径是.解答:解:当2是斜边时,则直径即是2;当2是直角边时,则斜边是,即直径是.所以这个圆布的直径最小应等于cm或2cm.点评:首先能够把实际问题转化为数学问题,注意由于没有具体指明斜边,应分情况讨论.11.写出一个以﹣3和7为根且二次项系数为1的一元二次方程x2﹣4x﹣21=0.考点:根与系数的关系.专题:计算题.分析:先计算﹣3与7的和与积,然后根据根与系数的关系求出满足条件的一元二次方程.解答:解:∵﹣3+7=4,﹣3×7=﹣21,∴以﹣3和7为根且二次项系数为1的一元二次方程为x2﹣4x﹣21=0.故答案为x2﹣4x﹣21=0.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.12.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.考点:根的判别式.专题:计算题.分析:根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.解答:解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根,∴△=b2﹣4ac≥0,即:4﹣4k≥0,解得:k≤1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故答案为:k≤1且k≠0.点评:本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.13.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是105°.考点:圆内接四边形的性质.分析:先根据圆内接四边形的性质求出∠DCB的度数,再由两角互补的性质即可得出结论.解答:解:∵四边形ABCD是圆内接四边形,∴∠DAB+∠DCB=180°,∵∠BAD=105°,∴∠DCB=180°﹣∠DAB=180°﹣105°=75°,∵∠DCB+∠DCE=180°,∴∠DCE=∠DAB=105°.故答案为:105°点评:本题考查的是圆内接四边形的性质,即圆内接四边形的对角互补.14.将半径为2cm,圆心角为120°的扇形围成一个圆锥的侧面,这个圆锥的底面半径为cm.考点:圆锥的计算.分析:利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得.解答:解:设此圆锥的底面半径为r,由题意,得2πr=,解得r=cm.故答案为:.点评:本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.15.如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=5.考点:垂径定理;三角形中位线定理.专题:压轴题;动点型.分析:根据垂径定理和三角形中位线定理求解.解答:解:点P是⊙O上的动点(P与A,B不重合),但不管点P如何动,因为OE⊥AP于E,OF⊥PB于F,根据垂径定理,E为AP中点,F为PB中点,EF为△APB中位线.根据三角形中位线定理,EF=AB=×10=5.点评:此题是一道动点问题.解答此类问题的关键是找到题目中的不变量.16.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为1或5s时,BP与⊙O相切.考点:切线的判定;切线的性质;弧长的计算.专题:压轴题;动点型.分析:根据切线的判定与性质进行分析即可.若BP与⊙O相切,则∠OPB=90°,又因为OB=2OP,可得∠B=30°,则∠BOP=60°;根据弧长公式求得长,除以速度,即可求得时间.解答:解:连接OP;∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=3cm,∴==π,圆的周长为:6π,∴点P运动的距离为π或6π﹣π=5π;∴当t=1或5时,有BP与⊙O相切.点评:本题考查了切线的判定与性质及弧长公式的运用.三、解答题(共11题,共88分)17.解方程:(1)2x2﹣5x+2=0.(2)2(x+3)2=x+3.考点:解一元二次方程-因式分解法.分析:(1)利用因式分解法求得方程的解即可;(2)移项,利用提取公因式法分解因式解方程即可.解答:解:(1)2x2﹣5x+2=0(2x﹣1)(x﹣2)=0x﹣2=0,2x﹣1=0,解得x1=2,x2=;(2)2(x+3)2=x+32(x+3)2﹣(x+3)=0(x+3)(2x+6﹣1)=0x+3=0,2x+5=0,解得x1=﹣3;x2=﹣.点评:此题考查用因式分解法解一元二次方程,掌握解方程的步骤与方法是解决问题的关键.18.(1)化简:()2+|1﹣|﹣()﹣1(2)解不等式组:.考点:实数的运算;负整数指数幂;解一元一次不等式组.专题:计算题.分析:(1)原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)原式=3+﹣1﹣2=…(2),由①得:x≤3;由②得:x>1,则不等式组的解集为1<x≤3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.计算或化简:(1)﹣+;(2)先化简(﹣)÷,然后从,0,1,﹣1中选取一个你认为合适的数作为x的值代入求值.考点:分式的化简求值;二次根式的加减法.专题:计算题.分析:(1)原式各项化为最简二次根式,合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=代入计算即可得到结果.解答:解:(1)原式=3﹣2+3=+3;(2)原式=•=,当x=时,原式==2.点评:此题考查了分式的化简求值,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.20.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(1)请写出该圆弧所在圆的圆心O的坐标(2,﹣1);(2)⊙O的半径为2(结果保留根号);(3)求的长(结果保留π).考点:垂径定理;坐标与图形性质;勾股定理;弧长的计算.专题:计算题.分析:(1)连接AB,BC,分别作出这两条弦的垂直平分线,两垂直平分线交于点D,即为所求圆心,由图形即可得到D的坐标;(2)由FD=CG,AF=DG,且夹角为直角相等,利用SAS可得出三角形ADF与三角形DCG 全等,由全等三角形的对应角相等得到一对角相等,再由同角的余角相等得到∠ADC为直角,利用弧长公式即可求出的长.解答:解:(1)连接AB,BC,分别作出AB与BC的垂直平分线,交于点D,即为圆心,由图形可得出D(2,﹣1);(2)在Rt△AED中,AE=2,ED=4,根据勾股定理得:AD==2;(3)∵DF=CG=2,∠AFD=∠DGC=90°,AF=DG=4,∴△AFD≌△DGC(SAS),∴∠ADF=∠DCG,∵∠DCG+∠CDG=90°,∴∠ADF+∠CDG=90°,即∠ADC=90°,则的长l==π.故答案为:(1)(2,﹣1);(2)2点评:此题考查了垂径定理,勾股定理,坐标与图形性质,以及弧长公式,熟练掌握垂径定理是解本题的关键.21.已知方程5x2+mx﹣10=0的一根是﹣5,求方程的另一根及m的值.考点:根与系数的关系;一元二次方程的解.分析:设方程的另一个根为t,先利用两根之积为﹣2求出t,然后利用两根之和为﹣可计算出m的值.解答:解:设方程的另一个根为t,根据题意得﹣5+t=﹣,﹣5t=﹣2,解得t=,则m=﹣25+5t=﹣23,即m的值为﹣23,方程的另一根为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.22.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.考点:垂径定理;勾股定理;圆周角定理.分析:(1)根据垂径定理,得到=,再根据圆周角与圆心角的关系,得知∠E=∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可.解答:解:(1)∵AB是⊙O的一条弦,OD⊥AB,∴=,∴∠DEB=∠AOD=×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,则AB=2AC=8.点评:本题考查了垂径定理,勾股定理及圆周角定理.关键是由垂径定理得出相等的弧,相等的线段,由垂直关系得出直角三角形,运用勾股定理.23.如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.考点:一元二次方程的应用.专题:几何图形问题.分析:(1)根据所给出的图形可直接得出长方体盒子的长、宽、高;(2)根据图示,可得2(x2+20x)=30×40﹣950,求出x的值,再根据长方体的体积公式列出算式,即可求出答案.解答:解:(1)长方体盒子的长是:(30﹣2x)cm;长方体盒子的宽是(40﹣2x)÷2=20﹣x(cm)长方体盒子的高是xcm;(2)根据图示,可得2(x2+20x)=30×40﹣950,解得x1=5,x2=﹣25(不合题意,舍去),长方体盒子的体积V=(30﹣2×5)×5×=20×5×15=1500(cm3).答:此时长方体盒子的体积为1500cm3.点评:此题考查了一元二次方程的应用,用到的知识点是长方体的表面积和体积公式,关键是根据图形找出等量关系列出方程,要注意把不合题意的解舍去.24.如图,在△ABC中,AC=BC,∠ACB=120°.(1)求作⊙O,使:圆心O在AB上,且⊙O经过点A和点C(尺规作图,保留作图痕迹,不写作法)(2)判断BC与⊙O的位置关系,并说明理由.考点:作图—复杂作图;直线与圆的位置关系.专题:作图题.分析:(1)作AC的垂直平分线交AB于点O,再以OA为圆心作⊙O即可;(2)连结OC,先利用等腰三角形的性质和三角形内角和定理计算出∠A=∠B=30°,则∠OCA=∠A=30°,于是可得到∠OCB=∠ACB﹣∠OCA=90°,然后根据切线的判定定理可判断BC与⊙O相切.解答:解:(1)如图,⊙O为所求作;(2)BC与⊙O相切.理由如下:连接BC,如图,∵AC=BC,∠ACB=120°∴∠A=∠B=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCB=∠ACB﹣∠OCA=120°﹣30°=90°,∴OC⊥BC,∵OC是半径∴BC与⊙O相切.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直线与圆的位置关系.25.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:(1)先求出每件的利润.在乘以每月销售的数量就可以得出每月的总利润;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由销售问题的数量关系建立方程求出其解即可.解答:解:(1)由题意,得60(360﹣280)=4800元.答:降价前商场每月销售该商品的利润是4800元;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由题意,得(360﹣x﹣280)(5x+60)=7200,解得:x1=8,x2=60∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点评:本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元二次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.26.已知,如图,AB、AC是⊙O得切线,B、C是切点,过上的任意一点P作⊙O的切线与AB、AC分别交于点D、E(1)连接OD和OE,若∠A=50°,求∠DOE的度数.(2)若AB=7,求△ADE的周长.考点:切线的判定与性质;切线长定理.分析:(1)连接OB,OC,OD,OP,OE,根据切线的性质和切线长定理得到OB⊥AB,OC⊥AC,OP⊥DE,DB=DP,EP=EC,AB=AC,于是求得∠OBA=∠OCA=90°,由于∠A=50°,求出∠BOC=360°﹣90°﹣90°﹣50°=130°,根据OB⊥AB,OP⊥DE,DB=DP,得到OD平分∠BOP,同理得OE平分∠POC,即可得到结论;(2)根据切线长定理得到DB=DP,EP=EC,AB=AC,由等量代换即可得到结果.解答:解:(1)连接OB,OC,OD,OP,OE,∵AB,AC,DE分别与⊙O相切,OB,OC,OP是⊙O的半径,∴OB⊥AB,OC⊥AC,OP⊥DE,DB=DP,EP=EC,AB=AC,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=360°﹣90°﹣90°﹣50°=130°,∵OB⊥AB,OP⊥DE,DB=DP,∴OD平分∠BOP,同理得:OE平分∠POC,∴∠DOE=∠DOP+∠EOP=(∠BOP+∠POC)=∠BOC=65°,(2)∵DB=DP,EP=EC,AB=AC,∴△ADE的周长=AD+DE+AE=AD+DP+EP+AE=AD+BD+AE+EC=AB+AC=2AB=14.点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.27.配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2﹣1≥﹣1,即:3a2﹣1就有最小值﹣1.只有当a=0时,才能得到这个式子的最小值﹣1.同样,因为﹣3a2≤0.所以﹣3a2+1≤1,即:﹣3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=﹣1时,代数式﹣2(x+1)2﹣1有最大值(填“大”或“小”值为﹣1.(2)当x=﹣1时,代数式2x2+4x+1有最小值(填“大”或“小”)值为﹣1.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?考点:配方法的应用.专题:几何图形问题.分析:(1)类比例子得出答案即可;(2)根据题意利用配方法配成(1)中的类型,进一步确定最值即可;(3)根据题意利用长方形的面积列出式子,利用(1)(2)的方法解决问题.解答:解:(1)因为(x+1)2≥0,所以﹣2(x+1)2≤0,即﹣2(x+1)2﹣1就有最大值﹣1.只有当x=﹣1时,才能得到这个式子的最大值﹣1.故答案是:﹣1,大,﹣1;(2)2x2+4x+1=2(x+1)2+1,所以当x=﹣1时,代数式2x2+4x+1有最小值为﹣1.故答案是:﹣1,小,﹣1;(3)设AD=x,S=x(16﹣2x)=﹣2(x﹣4)2+32,当AD=4m时,面积最大值为32m2.点评:此题考查配方法的运用,理解题意,类比给出的方法得出答案即可,渗透二次函数的最值.。