D.A1B1∥NE
)
答案 B
解析 ∵在▱AA1B1B中,AM=MA1,BN=NB1,∴AM=BN.又AM∥BN,
∴四边形ABNM是平行四边形,∴MN∥AB.
又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面
MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB.在△ABC中,EF≠AB,
∴EF≠MN,∴四边形MNEF为梯形.故选B.
3.设m,n是不同的直线,α,β是不同的平面,则下列命题正确的是(
A.若m∥α,n∥α,则m∥n
B.若m∥α,m∥β,则α∥β
C.若m⊥α,α⊥β,则m∥β
D.若m⊥α,m⊥β,则α∥β
答案 D
解析 A选项,若m∥α,n∥α,则m∥n,或m,n相交或m,n异面,A错误;
EMGHIJ∥平面ACD1,EF∥平面ACD1,则F⊂平面EMGHIJ,观察各选项,ACD
满足.
考点二
线面平行的判定与性质(多考向探究)
考向1.直线与平面平行的判定
典例突破
例2.(2023江西南昌三模)如图,在多面体ABCDEF中,四边形ABCD与ABEF
均为直角梯形,AD∥BC,AF∥BE,DA⊥平面
∴BB1=2CD, =2,
∴OE∥GD,又OE⊄平面AA1C1C,GD⊂平面AA1C1C,
∴OE∥平面AA1C1C.
(2)解连接AC1,则GD∥AC1,OE∥AC1,
∴A,C1,O,E四点共面.
又AO∩BC=F,∴F∈AO,F∈平面AC1EO.
又F∈BC,BC⊂平面BB1C1C,
∴F∈平面BB1C1C.
系如何?
提示 平行或异面.
2.面面平行的判定与性质