第二节 插值多项式的构造
- 格式:ppt
- 大小:739.50 KB
- 文档页数:31
多项式的插值多项式与Lagrange插值知识点多项式的插值多项式是数值分析中的重要概念,用于逼近给定数据点集合的函数。
通过插值,我们可以通过已知的数据点,构造出一个多项式函数,从而对未知数据点进行预测和估计。
Lagrange插值是一种常用的插值方法,具有简单易懂的形式和计算方法。
1. 插值多项式的定义插值多项式是指通过已知数据点集合,构造一个多项式函数,该函数在已知数据点上与原函数完全相等。
插值多项式在数值计算、信号处理、图像处理等领域都有广泛的应用。
2. Lagrange插值的原理Lagrange插值是一种基于多项式插值的方法,它通过构造一个满足一定条件的插值多项式来逼近原函数。
Lagrange插值的思想是,通过构造一系列的基函数,使得插值多项式在每个数据点上的取值等于对应数据点的函数值,并且在其他数据点上的取值为0。
3. Lagrange插值的公式Lagrange插值的公式非常简洁明了。
设已知的数据点集合为{(x0, y0), (x1, y1), ...,(xn, yn)},其中xi和yi分别代表数据点的横坐标和纵坐标。
插值多项式的公式可以表示为:P(x) = ∑(i=0 t o n) [yi * Li(x)]其中,Li(x)为Lagrange基函数,其公式为:Li(x) = ∏(j=0 to n, j!=i) [(x - xj) / (xi - xj)]4. Lagrange插值的优点Lagrange插值具有以下几个优点:(1) 简单易懂:Lagrange插值的公式非常简洁明了,易于理解和计算。
(2) 泛用性强:Lagrange插值适用于任意数量的数据点,能够满足不同场景的需求。
(3) 高精度:在数据点较为密集的情况下,Lagrange插值能够提供较高的插值精度。
5. Lagrange插值的局限性尽管Lagrange插值具有许多优点,但也存在一些局限性:(1) 数据点过于离散:当数据点过于离散时,Lagrange插值可能会导致插值多项式的震荡现象,从而影响插值结果的准确性。
拉格朗日插值与多阶多项式在数学领域中,拉格朗日插值是一种常用的插值方法,用于通过已知的数据点构造一个多项式函数,以逼近未知函数。
这种方法以法国数学家约瑟夫·拉格朗日的名字命名,他在18世纪提出了这一概念。
拉格朗日插值的基本思想是通过构造一个多项式函数,使其在已知数据点处与未知函数相等。
这个多项式函数被称为拉格朗日插值多项式。
它的形式为:P(x) = Σ yi * Li(x)其中,P(x)是拉格朗日插值多项式,yi是已知数据点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数Li(x)的定义如下:Li(x) = Π (x - xj) / (xi - xj)其中,i ≠ j,xi和xj是已知数据点的横坐标。
通过拉格朗日插值,我们可以在已知数据点处构造一个多项式函数,从而近似地描述未知函数的行为。
这个多项式函数的阶数取决于已知数据点的个数。
如果已知数据点的个数为n+1,那么拉格朗日插值多项式的最高阶数为n。
多阶多项式是指多项式函数的阶数大于1的情况。
在拉格朗日插值中,我们可以通过增加已知数据点的个数来构造更高阶的多项式函数,从而提高近似的精度。
然而,需要注意的是,随着阶数的增加,多项式函数的复杂性也会增加。
高阶多项式函数可能会在数据点之间产生震荡现象,这被称为龙格现象。
为了避免这种情况,我们需要谨慎选择数据点,以及适当控制多项式函数的阶数。
除了拉格朗日插值,还有其他插值方法,例如牛顿插值和埃尔米特插值。
这些方法都有各自的特点和适用范围。
在实际应用中,我们需要根据具体问题的需求来选择合适的插值方法。
总结起来,拉格朗日插值是一种常用的插值方法,通过构造多项式函数来近似描述未知函数的行为。
多阶多项式可以提高近似的精度,但需要注意控制阶数,以避免龙格现象的出现。
在实际应用中,我们需要根据具体问题的需求来选择合适的插值方法。
通过插值方法,我们可以更好地理解和分析数据,从而为问题的解决提供有力的支持。
牛顿插值法的原理和推导过程一、引言在科学计算和数值分析中,插值法是一种重要的数学工具,它可以通过已知的离散数据点来估计未知点的值。
在众多插值法中,牛顿插值法以其形式简洁、计算方便而广受欢迎。
本文将对牛顿插值法的原理和推导过程进行详细阐述。
二、牛顿插值法的基本原理牛顿插值法是一种多项式插值方法,它的基本思想是通过构造一个n次多项式Pn(x),使得该多项式在给定的n+1个插值节点上与被插值函数f(x)具有相同的函数值。
这样,在插值节点之间,我们可以用Pn(x)来近似代替f(x)。
三、牛顿插值法的推导过程差商与差分为了构造插值多项式,首先需要引入差商的概念。
设f[xi,xj]表示函数f(x)在点xi 和xj上的一阶差商,其计算公式为:f[xi,xj] = (f(xj) - f(xi)) / (xj - xi)类似地,可以定义二阶、三阶乃至n阶差商。
n阶差商f[x0,x1,...,xn]表示函数f(x)在点x0,x1,...,xn上的差商,可以通过低一阶的差商递归计算得到。
差分是差商的另一种表现形式,它与差商之间有一一对应的关系。
在实际计算中,差分往往比差商更方便。
牛顿插值多项式的构造有了差商的概念,我们就可以构造牛顿插值多项式了。
设n次牛顿插值多项式为:Pn(x) = f(x0) + fx0,x1 + fx0,x1,x2(x-x1) + ... + fx0,x1,...,xn(x-x1)...(x-xn-1)其中,f[x0,x1,...,xk]表示k阶差商。
可以看出,Pn(x)是一个形式简洁的多项式,其各项系数即为各阶差商。
为了证明Pn(x)满足插值条件,即Pn(xi) = f(xi) (i=0,1,...,n),我们可以将xi代入Pn(x)中,逐项验证。
由于差商的性质,当x取xi时,高于i阶的差商项都将为0,因此Pn(xi) = f(xi)。
牛顿插值法的计算步骤(1)根据给定的插值节点,计算各阶差商;(2)根据牛顿插值多项式的公式,构造插值多项式Pn(x);(3)将需要插值的点代入Pn(x),得到插值结果。
拉格朗日插值多项第二节拉格朗日插值多项式5.2.1 基函数由上一节的证明可以看到,要求插值多项式,可以通过求方程组(5.1.22)的解得到,但这样不但计算复杂,且难于得到的简单表达式。
考虑简单的插值问题:设函数在区间[a,b]上n+1个互异节点上的函数值为j=0,1,…,n求插值多项式,满足条件j=0,1,…n, i=0,1,…,n由上式知,是的根,且∈,可令再由得于是n+1个n次多项式称为以为节点的n次插值基函数。
n=1时的一次基函数为(图5-2):.n=2时的二次基函数为(图5-3):5-25-35.2.2 拉格朗日插值多项式现在考虑一般的插值问题:设函数在区间[a,b]上n+1个互异节点上的函数值分别为,求n次插值多项式,满足条件j=0,1,…n令(5.2.3)其中为以为节点的n次插值基函数,则是一次数不超过n的多项式,且满足, j=0,1,…,n再由插值多项式的唯一性,得式(5.2.3)表示的插值多项式称为拉格朗日(Lagrange)插值多项式。
特别地,n=1 时称为线性插值(图5-4(a)),n=2时称为抛物插值或二次插值(图5-4(b))。
值得注意的是,插值基函数仅由插值节点确定,与被插函数f(x)无关。
因此,若以为插值节点对函数f(x)≡1作插值多项式,则由式(5.2.3)立即得到基函数的一个性质≡1还应注意,对于插值节点,只要求它们互异,与大小次序无关。
5-4例1 已知y= , =4, =9,用线性插值求的近似值。
解 =2, =3,基函数分别为插值多项式为所以例2 求过点(-1,-2),(1,0),(3,-6),(4,3)的三次插值多项式。
解以=-1,=1,=3,=4为节点的基函数分别为插值多项式为5.2.3 插值余项插值多项式的余项 (x)=f(x)- (x),也就是插值的截断误差或方法误差。
关于余项有如下的余项定理:定理设被插函数f(x)在闭区间[a,b]上n阶导数连续,在开区间(a,b) 内存在,是[a,b]上n+1个互异节点,记则插值多项式 (x)的余项为(5.2.4)证明由插值条件和的定义,当x= 时式(5.2.4)显然成立,并且有k=0,1,…,n (5.2.5)这表明都是函数 (x)的零点,从而 (x)可表示为(x)=f(x)-(x)=K(x) (5.2.6)其中K(x)是待定函数。
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。
早在6世纪,中国的刘焯已将等距二次插值用于天文计算。
17世纪之后,I.牛顿,J.-L.拉格朗日分别讨论了等距和非等距的一般插值公式。
在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。
插值问题的提法是:假定区间[a,b]上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……xn 处的值是f [x0],……f(xn),要求估算f(x)在[a,b]中某点的值。
其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……Cn的函数类Φ(C0,C1,……Cn)中求出满足条件P(xi)=f(xi)(i=0,1,…… n)的函数P(x),并以P()作为f()的估值。
此处f(x)称为被插值函数,c0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……Cn)称为插值函数类,上面等式称为插值条件,Φ(C0,……Cn)中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为插值余项。
当估算点属于包含x0,x1……xn 的最小闭区间时,相应的插值称为内插,否则称为外插。
多项式插值这是最常见的一种函数插值。
在一般插值问题中,若选取Φ为n次多项式类,由插值条件可以唯一确定一个n次插值多项式满足上述条件。
从几何上看可以理解为:已知平面上n+1个不同点,要寻找一条n次多项式曲线通过这些点。
插值多项式一般有两种常见的表达形式,一个是拉格朗日插值多项式,另一个是牛顿插值多项式。
埃尔米特插值对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。
这时的插值函数P(x),自然不仅要求在这些点等于f(x)的函数值,而且要求P(x)的导数在这些点也等于f(x)的导数值。