放大电路的失真
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
共射放大电路判断失真的依据1. 引言1.1 概述共射放大电路是一种常见的电子放大器电路,其具有简单、稳定和高增益等特点,在许多电子设备中起到重要作用。
然而,由于各种因素的影响,共射放大电路可能会发生失真现象,降低信号质量或者干扰其他信号。
因此,准确判断共射放大电路的失真情况对于保证信号传输的可靠性和质量至关重要。
1.2 文章结构本文将首先介绍共射放大电路的原理与特点,包括其基本原理、工作特点以及应用领域。
然后,文章将详细探讨判断共射放大电路失真的依据,包括输入输出特性曲线分析、非线性失真分析和频率响应分析等方面。
接着,通过实验验证与案例分析来验证所提出的判断依据,并对实验结果进行数据分析和案例讨论。
最后,在结论部分总结本文所得出的结论,并展望未来研究方向与建议。
1.3 目的本文旨在通过深入研究共射放大电路判断失真的依据,为工程技术人员提供准确判断共射放大电路失真情况的方法和依据。
通过本文的研究,希望能够提高共射放大电路的设计和调试水平,进一步推动电子设备的发展和应用。
2. 共射放大电路的原理与特点:2.1 共射放大电路的基本原理:共射放大电路是一种常用的单级晶体管放大电路,由一个NPN型晶体管、输入耦合网络和输出负载组成。
其基本原理如下:当输入信号施加到基极时,通过输入耦合网络传递给晶体管的发射极。
当输入信号变化时,导致基结电压发生变化,从而改变晶体管的工作状态。
在共射放大电路中,信号电压经过共阻(发射极负载电阻)产生对地共节点,并通过输出耦合元器件传递至负载上。
在这个过程中,晶体管会进行放大操作。
2.2 共射放大电路的工作特点:- 放大增益高:由于共射放大电路采用了反相输入、反相输出的方式,因此具有较高的电压增益。
- 输入输出隔离:由于输入与输出之间通过晶体管来进行功率转换,因此可以实现较好的输入输出隔离效果。
- 输入阻抗低:由于共射放大电路使用了低阻抗驱动方式,使得其具有较低的输入阻抗。
- 输出阻抗高:共射放大电路的输出阻抗较高,可以与后级负载进行匹配。
共发射极放大电路是一种应用广泛的放大电路,如果电路存在失真问题,可以通过以下方法消除:
1.选择合适的工作点:工作点的选择对于放大电路的性能至关重要。
如果工作点选择不当,会导致放大电路产生失真。
因此,需要根据实际情况选择合适的工作点,以避免失真。
2.增加负反馈:负反馈可以有效地改善放大电路的性能,包括减少
失真。
通过在放大电路中增加负反馈,可以减小输出信号的失真。
3.优化电路布局:电路布局的好坏也会影响放大电路的性能。
在设
计电路时,应该尽量优化电路布局,减少寄生电容和电感的影响,以避免失真。
4.选择合适的元器件:在选择元器件时,应该选择性能良好、精度
高的元器件,以保证放大电路的性能和质量。
通过以上措施,可以有效地消除共发射极放大电路的失真,提高电路的性能和质量。
如果仍然存在失真问题,可以通过进一步的分析和调试来解决。
目录一、引言 (2)二、晶体管放大电路的类型 (2)2.1共射极放大电路 (2)2.2共集极放大电路 (2)2.3共基极放大电路 (2)三、几种类型的失真 (3)3.1非线性失真 (3)3.1.1饱和失真 (3)3.1.2截止失真 (4)3.1.3交越失真 (4)3.1.4双向失真 (6)3.2晶体管放大电路非线性失真的因素概括 (6)3.2.1信号源内阻 (6)3.2.2放大器接法 (6)3.2.3负反馈 (7)3.2.4多级反相放大 (7)3.3线性失真 (7)四、总结 (8)参考文献 (9)放大电路失真现象的研究张翔翔(北京交通大学电子信息工程学院北京 100044)摘要:本文介绍了几类放大电路,然后介绍了几种晶体管放大电路几种类型的失真。
并分析了失真产生的原因,又通过具体电路的具体波形非线性失真,介绍了线性失真和非线性失真的区别,着重讲解了减少线性失真和非线性失真的方法和步骤。
一、引言失真的情况在现实生活中随处可见,指的是指一个物体、影像、声音、波形或其他资讯形式其原本形状(或其他特征)的改变现象,而且往往是不希望出现的。
在理想的放大器中,输出波形除放大外,应与输入波形完全相同,但实际上,不能做到输出与输入的波形完全一样,这种放大电路中的失真无疑会给工程增加一些麻烦,所以对其失真类型的判断和采取相应的改进措施就显得颇为必要了。
放大电路常见的失真分为线性失真和非线性失真,其中非线性失真又包括饱和失真、截止失真和交越失真。
二、晶体管放大电路的类型晶体管放大电路中的关键器件便是晶体管。
由NPN型晶体管和PNP型晶体管组成基本放大电路各有3种,即共射极放大电路、共集电极放大电路和共基极放大电路。
2.1共射极放大电路图2-1左所示为共射极放大电路的基本结构,从图中可以看到该类电路是将输入信号加到晶体管基极和发射极之间,而输出信号又取自晶体管的集电极和发射极之间,由此可见发射极为输入信号和输出信号的公共接地端,具有这种特点的单元电路便称为共射极放大电路。
放大电路的失真研究——模拟电子技术实验教学案例参赛作品黄亮、佟毅、李赵红导师:***北京交通大学电子信息工程学院国家电工电子实验教学示范中心2013年5月28日目录1.放大电路的失真研究 (3)1.1电路背景 (3)1.2实验目的 (3)1.3技术指标及设计要求 (3)1.4评分标准 (5)1.5实验特点 (6)1.6实验原理 (6)1.7方案比较 (11)1.8实验数据分析 (12)1.9实践能力 (13)参考文献: (13)1. 放大电路的失真研究(模拟电子技术实验) 黄亮 佟毅 李赵红 2013年4月9日1.1电路背景电路输出波形失真引起信号不能正确的传输,解决失真问题是电路设计工程师面对的一个重要问题。
输出波形失真可发生在基本放大、功率放大和负反馈放大等电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。
1.2实验目的掌握失真放大电路的设计和解决电路的失真问题可以提高学生系统地构思问题和解决问题的能力。
通过失真放大电路实验可以系统地归纳模拟电子技术中失真现象和掌握消除各种失真技术,培养学生通过现象分析电路结构特点,进而改善电路的能力。
1.3技术指标及设计要求 1.3.1基本要求(1)输入标准正弦波,如图1.1(a ),频率2kHz ,幅度50mV ,输出正弦波频率2kHz ,幅度1V 。
(2)图1.1(b )是电路输出波形,若达到要求,如何设计电路,并修改。
(3)图1.1(c )是电路输出波形,若达到要求,如何设计电路,并修改。
(a )(b )(c )(d )(e ) (f )图1.1(4)图1.1(d)是电路输出波形,若达到要求,如何设计电路,并修改。
(5)输入标准正弦波,频率2kHz,幅度5V,设计电路使之输出图1.1(e)输出波形,并改进。
1.3.2发挥部分(1)图1.1(f)是电路输出失真波形,设计电路并改进。
(2)任意选择运算放大器,测出增益带宽积f T。
什么是电路中的放大器失真放大器是电子电路中常见的一个重要组件,其主要功能是将输入信号放大至需要的幅度,并将其输出。
然而,在实际应用中,放大器常常会引入一定的失真,影响信号的传输和质量。
本文将介绍什么是电路中的放大器失真,以及其产生的原因和常见类型。
一、放大器失真的定义在电路中,放大器失真指的是放大器输出信号与输入信号之间存在的非线性关系,导致输出信号形状或幅度发生改变,与原始信号存在差异。
这种失真会导致原始信号的畸变,降低信号的准确性和保真度。
二、放大器失真的原因1. 非线性特性:放大器在放大信号时,其放大增益往往会随着输入信号的变化而变化。
当输入信号较小或靠近放大器的饱和区时,放大器会表现出非线性的放大特性,导致失真现象的发生。
2. 频率响应:放大器在不同频率下的放大特性可能有所不同,其中某些频率段上的放大增益会有所衰减或变化。
这种频率响应不均导致输出信号的失真。
3. 输出载荷:放大器的输出端常常需要连接负载电阻或其他电子组件。
不正确的负载匹配或负载电阻的变化也会导致放大器输出信号的失真。
4. 温度效应:放大器在工作时会产生一定的发热,而温度的变化会引起电子器件的参数变化。
因此,温度的变化可能导致放大器工作状态发生变化,从而导致失真的发生。
三、放大器失真的类型1. 线性失真:线性失真是放大器输出信号与输入信号之间存在的线性变化关系。
例如,信号增益的非线性变化将导致放大器输出的失真。
2. 非线性失真:非线性失真是放大器输出信号与输入信号之间存在的非线性变化关系。
非线性失真可以进一步细分为各种类型,如谐波失真、交叉失真等。
谐波失真指的是输出信号中包含输入信号频率的整数倍频率成分,而交叉失真则指的是输出信号中包含输入信号频率之外的频率成分。
3. 相位失真:相位失真是指放大器输出信号的相位与输入信号的相位之间存在的差异。
相位失真会导致信号波形的畸变或时序错误。
四、放大器失真的影响放大器失真对信号的传输和质量会产生多种影响,其中包括:1. 信号失真:放大器失真会引起输入信号的形状、幅度或频谱发生变化,从而导致信号的失真。
国家电工电子实验教学中心模拟电子技术实验报告实验题目:放大电路的失真研究学院:电子信息工程学院专业:电子科学与技术学生姓名:学号:任课教师:侯建军*黄亮2014 年 5 月 20 日目录3 实验过程 (2)5 参考文献 (20)1 实验题目及要求(写明实验任务要求,可复制题目原文。
)1、基本部分(1)输入一标准正弦波,频率2kHz,幅度50mV,输出正弦波频率2kHz,幅度1V。
(2)放大电路输入是标准正弦波,其输出波形失真(顶部、底部、双向、交越失真),若达到要求,如何设计电路,并修改。
2、发挥部分(1)放大电路输入是标准正弦波,其输出波形出现不对称失真。
(2)任意选择一运算放大器,测出增益带宽积f T。
并重新完成前面基本要求和发挥部分的工作。
(3)将运放接成任意负反馈放大器,要求负载2kΩ,放大倍数为1,将振荡频率提高至f T的95%,观察输出波形是否失真,若将振荡器频率提高至f T的110%,观察输出波形是否失真。
(4)放大倍数保持100,振荡频率提高至f T的95%或更高一点,保持不失真放大,将纯阻抗负载2kΩ替换为容抗负载20m F,观察失真的输出波形。
(5)设计电路,改善发挥部分(4)的输出波形失真。
3、附加部分(1)设计一频率范围在20Hz~20kH语音放大器。
(2)将各种失真引入语音放大器,观察、倾听语音输出。
4、失真研究(1)由单电源供电的运算放大器电路会出现哪种失真(2)负反馈可解决波形失真,解决的是哪类失真(3)测量增益带宽积f T有哪些方法(4)提高频率后若失真,属于哪类失真(5)电阻负载改成大容性负载会出现什么失真(6)有哪些方法可以克服电阻负载改成大容性负载出现的失真(7)用场效应管组成的放大电路或运算放大器同样会产生所研究的失真吗(8)当温度升高,晶体管组成的电路刚刚产生静态工作点漂移,使电路产生某种失真,此时由场效应管组成的电路也同样失真吗为什么(9)归纳失真现象,并阐述解决失真的技术。
模拟电子技术研讨论文放大电路失真现象的研究学院:电子信息工程学院专业:通信工程学号:学生:指导教师:***2013年5月目录引言 (3)1.失真类型及产生原因 (3)1.1非线性失真 (3)1.2线性失真 (3)2.各类失真现象分析 (4)2.1截止、饱和和双向失真 (4)2.1.1截止、饱和失真理论分析 (4)2.1.2饱和失真的Mutisim仿真 (4)2.1.3双向失真分析及改善方案 (5)2.2交越失真 (5)2.2.1交越失真理论分析 (5)2.2.2传统交越失真改善方案 (6)2.2.3基于负反馈的改善方案 (6)2.3不对称失真 (7)2.3.1不对称失真概念 (7)2.3.2不对称失真理论分析 (7)2.3.3传统负反馈改善方案 (8)2.3.4多级反相放大改善方案 (8)2.4线性失真 (9)2.4.1线性失真理论分析 (9)2.4.2线性失真电路设计及改善方案仿真 (9)3.用双级反相放大改善不对称失真的电路设计 (10)4.总结 (11)【参考文献】 (12)放大电路失真现象的研究(北京交通大学电子信息工程学院,北京 100044)摘要:失真问题是模拟电子技术中的一个重要问题,系统化解决失真问题,能够给放大电路在工程中的设计提供便利。
本文简单地介绍了失真的类型,系统地介绍了各类失真现象产生的原因,同时设计了各类失真电路,给出了各类失真的改善方案,对部分失真问题进行了仿真实验。
关键词:非线性失真、线性失真、三极管放大电路、负反馈、Multisim仿真引言在放大电路中,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的。
但在实际电路中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真。
在工程上,电路的失真影响着放大电路的正常使用,在理论上对各种失真现象的原理的研究,有利于工程上快速检测出放大电路失真的原因,从而完善放大电路的设计。
功率放大电路的几种失真特点1.引言1.1 概述概述部分应当对功率放大电路的失真特点进行简要介绍。
可以参考以下内容进行编写:功率放大电路是现代电子技术领域中常见的一种电路拓扑结构,被广泛应用于音频放大、射频放大以及其他对输出功率要求较高的领域。
然而,虽然功率放大电路可以实现信号的放大,但在实际应用中会产生一些失真现象,对输出信号的品质造成一定的影响。
失真特点是指功率放大电路在信号放大过程中,产生了与输入信号不一致的变形现象。
这些失真包括非线性失真、相位失真、交叉失真等。
非线性失真是指输入输出特性在非线性区域存在失真,导致输出信号包含输入信号中不存在的频谱成分。
相位失真是指输入信号中不同频率的相位关系在输出信号中发生了改变,造成信号波形变形。
交叉失真是指两个或多个频率的信号在放大过程中相互干扰产生的失真。
了解功率放大电路的失真特点对于电子工程师和研究人员具有重要的意义。
首先,失真特点的研究可以帮助我们更好地理解功率放大电路的工作原理,为电路设计和优化提供指导和参考。
其次,了解失真特点可以帮助我们选择合适的补偿方法,减小失真对输出信号品质的影响。
最后,对功率放大电路失真特点的研究也为进一步提升电路性能和应用领域拓展提供了基础。
本文将重点介绍功率放大电路的几种常见失真特点,并探讨其产生的原因和可能的缓解方法。
通过对这些失真特点的深入分析,希望能够为功率放大电路的设计、优化和应用提供一定的参考价值。
1.2文章结构本文将探讨功率放大电路的几种失真特点。
为了更好地组织文章内容,本文将分为三个部分进行阐述。
首先,在引言部分我们将对本文的主题进行概述,介绍功率放大电路及其在电子领域中的重要性。
同时,我们还会简要介绍文章的结构,包括各章节的主题和内容,以方便读者把握全文的脉络。
其次,在正文部分,我们将详细讨论功率放大电路的两种主要失真特点。
第一种失真特点将会着重讨论...(这里可以简要描述第一种失真特点的内容)。
第二种失真特点则会聚焦于...(这里可以简要描述第二种失真特点的内容)。
基本放大电路失真度
1、信号在传输过程中,可能产生线性和非线性两种失真。
线性失真又称为频率失真,是由于器件内部电抗效应和外部电抗元件的存在,而使得电路对同一信号中不同的频率重量的传输系数不同或相位移不同而引起的。
非线性失真是由于器件的非线性引起的。
两种失真的区分在于非线性失真使得电路的输出信号中产生了不同于输入信号的新的频率成分,而线性失真则不会产生新的频率成分。
2、线性失真用电路的频率特性表示,失真度的测量是指非线性失真的程度的测量。
衡量非线性失真的大小,常用非线性失真系数(失真度)表示,它的定义为:
式中U1为基波重量电压有效值。
U2,U3,…,UN分别为二次、三次……N次谐波重量电压有效值。
由于在实际工作中测量被测信号的基波电压有效值比较困难,而一般测量被测信号的电压有效值比较简单,因此,常用的测试非线性失真的大小的仪器——失真度测试仪——测出的非线性失真系数为0。
即o为被测信号中各次谐波电压有效值与被测信号电压有效值之比的百分数。
和o的关系为:
当00%时,=0,当00%时,则应按上式计算信号的失真。
失真度既可以表征电路的特性,又可以表征非正弦信号与正弦信号的差别,用失真度来表征一个正弦振荡器的输出波形的好坏就是一个例子。
一般,人耳对音乐能觉察0.7%左右的失真度;对语言能辨别3%~5%的失真度。
对于音频设备,常要求失真度在0.5%~0.8%以下。
问题:什么是三极管放大电路的饱和失真和截止失真?如何避免?
解答:
当输入交流信号较大,因静态工作点设置过高,信号正半周使器件进入饱和区而造成的波形失真,称为饱和失真;反之因静态工作点设置过低,信号负半周使器件进入截止区而造成的波形失真,称为截止失真。
这两种失真都是因为器件的非线性特性造成的,所以统称为非线性失真。
为了避免出现饱和失真和截止失真,可以调节电阻RB、RC或电源UCC,使静态工作点沿负载线移动或改变负载线的斜率,而使静态工作点移到合适的位置。