数列+三角函数综合应用
- 格式:docx
- 大小:200.92 KB
- 文档页数:11
数列的综合应用教学设计数列的综合应用一、教学内容分析本节内容安排在《普通高中课程标准实验教科书数学必修5》(人教A版),第二章内容结束之后的综合练习。
在课本中没有专设章节。
内容从教材习题2.5中A组的第4题中体现。
本章五节内容分别讲授了等差数列、等比数列以及这两种数列的性质、通项公式、前N项和等基础内容。
让学生在此基础之上,了解高考中出现频率较多的一些特殊数列。
在实际教学中,本节内容应该分为五个阶段:第一阶段学生要充分掌握基本数列的知识点,可用提问的方式进行复习回顾。
第二阶段,对于特殊数列有关例题首先要引导学生观察,找到与基本数列的相似处,从而决定构造为基本数列中的等差数列或等比数列,大胆提出猜想。
第三阶段从猜想入手,开始构造。
运用基本数列的形式和性质得到新的数列。
构造出的新数列必须满足基本数列成立的条件。
验证猜想的正确性。
第四阶段根据题目要求从构造出的新数列找出所求项。
第五阶段,老师和学生一起归纳题型。
学生在老师的引导下结题,提高主动性,学习的灵活性。
从而提高对本节知识的兴趣。
二、学情分析对于高一年级的学生来说。
之前的学习中已经接触到了函数内容。
以及在本节内容的学习之前,已经有了数列的基础。
学生已经具备了一定的分析能力,函数构造基础等。
对于本节授课内容来说,学生在一般很难自己分析出来,有一定的难度。
所以需要老师的正确引导,但是在复习的基础上不宜直接灌输解题方法。
应该带领学生一起观察、分析、猜想、证明。
从而加深学生对本节内容的理解,也可让学生自己尝试找到新的解法,建立自己的思维模式。
三、设计思想在授课中,必须要求学生掌握基本数列(等差数列和等比数列)的内容。
以此引导学生,分析特殊数列。
并且根据之前学习三角函数时用到的“构造”理念。
将特殊数列构造为基本数列,再运用基本数列的知识点来解题。
课堂中,以例题分析为主,让学生学会观察特殊数列的结构,分析如何构造出适合的基本数列的形式。
讲课过程中,以启发性为主,让学生主动分析。
高考数学六大主干知识
高考数学六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。
一、三角函数:三角函数的化简与求值、图像与性质、解三角形、三角恒等变换、解方程、周期性与最值。
二、数列:数列的概念与通项、等差数列与等比数列、数列求和、数列的综合应用。
三、统计与概率:概率论、统计初步。
四、立体几何:空间几何体的认识、三视图、空间坐标系、空间点、直线、平面的位置关系、几何体的表面积和体积。
五、函数与导数:函数的概念及性质、幂函数、指数函数、对数函数、函数的图像、微积分基本定理、及其基本运算。
六、解析几何:直线和圆锥曲线的定义、方程、直线和圆锥曲线的交点、圆锥曲线的性质。
主干知识是每年高考数学的重点内容,也是数学试卷的主要构成部分。
在掌握这些主干知识时,需要多练习、多复习,加深对知识的理解,同时适当扩大自己的数学知识面,养成良好的数学思维习惯。
以下是一个综合题,涉及到数列和三角函数的应用:
题目:已知数列 {an} 的通项公式为 an = 2n + 1,其中 n 为正整数。
求证:当 n 为正整数时,三角函数 sin(π/2 - an) = cos(πn/2)。
解答:
根据已知数列 {an} 的通项公式 an = 2n + 1,我们可以将三角函数中的角度表示进行替换,即将 an 替换为 2n + 1。
首先,我们将左边的三角函数进行展开:
sin(π/2 - an) = sin(π/2 - (2n + 1))
根据三角函数的差化积公式,我们可以将 sin(π/2 - (2n + 1)) 转化为 cos((2n + 1) - π/2):
sin(π/2 - (2n + 1)) = cos((2n + 1) - π/2)
进一步化简右边的式子:
cos((2n + 1) - π/2) = cos(2n + 1 - π/2)
我们知道,cos(π/2 - θ) = sinθ,将上式进行变换得到:
cos(2n + 1 - π/2) = sin(π/2 - (2n + 1))
最后,我们得到:
sin(π/2 - (2n + 1)) = cos(2n + 1 - π/2) = sin (π/2 - (2n + 1))
由此可证,当 n 为正整数时,三角函数 sin(π/2 - an) = cos(πn/2) 成立。
这道题结合了数列的通项公式和三角函数的差化积公式,考查了学生对数列和三角函数概念的理解,并要求学生进行符号替换和化简推导。
高考数学专题讲座 第7讲 三角函数的综合应用一、考纲要求1.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式; 2.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明; 3.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角;4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.二、基础过关 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( ).A .21 B .2- C .34 D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形; (2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形. 以上正确命题的个数是( ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .8.下列命题正确的有 . (1)若-2π<α<β<2π,则βα-范围为(-π,π);(2)若α在第一象限,则2α在第一、三象限; (3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);(4)2sin θ=53,2cos θ=54-,则θ在第三、四象限.三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2.(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.四、 热身演练 1.已知,那么下列命题成立的是( ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( ).3.函数的反函数是( ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) . ①函数y=-sin(kπ+x)(k∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点(π/12,0)对称;③函数y =sin(2x+π/3)+sin(2x -π/3)的最小正周期是π;④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .9.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.三角函数的综合应用一、考纲要求:1. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式 2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. 3. 会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角.4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题. 二、基础过关: 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( A ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( B ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( D ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( B ).A .21B .2-C .34D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( B ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( C ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .28.下列命题正确的有 .(2)(1)若-2π<α<β<2π,则βα-范围为(-π,π); (2)若α在第一象限,则2α在第一、三象限;(3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);βφαDCBA1.2 m2 m 1 m (4)2sinθ=53,2cosθ=54-,则θ在第三、四象限. 三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.解:由题意可得 ⎪⎩⎪⎨⎧≤-+-+≥-4sin cos 4721sin 2x m xm x m , 即 ⎪⎩⎪⎨⎧+≤-+-≥+-xm x x m m sin 443sin sin 212恒成立对R x ∈,又 21)21(sin 43sin 2sin 2---=-+-x x x ,∴3sin 4≥+x ,∴⎪⎩⎪⎨⎧≤-≥+-32121m m m , ∴⎪⎩⎪⎨⎧≤+≥+32121m m m , ∴21-=m ,或323≤<m例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)解:如图,8.02.12=-=CD ,设x AD =,则x x AD BD 8.18.01tan =+==α, xAD CD 8.1tan ==β, βαβαβαφtan tan 1tan tan )tan(tan +-=-= ,∴4.2144.12144.118.08.118.08.1tan =⋅≤+=⋅+-=xx x x x x x x φ当xx 44.1=,即2.1=x 时, φtan 达到最大值4.21,φ是锐角,φtan 最大时,φ也最大,所以值班人员看表盘最清楚的位置为2.1=AD 米.例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2,(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.解:(1)设b →=(x,y ),则2x+2y=-2,且a →·b →=|b →||c →|cos 43π=22y x +×22×(-22)=-2,解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==1y x , ∴b →=(-1,0) 或b →=(0,-1).(2)∵三角形的三内角A 、B 、C 依次成等差数列,∴b=3π,∵b →⊥t →,∴b →=(0,-1),∴b →+c →=( cosA,22cos 2C -1)=(cosA,cosC),∴|b →+c →|2=C A 22cos cos +=1+21(cos2A+cos2C)=1+cos(A+C)cos(A -C)=1-21cos(A -C),∴-32π<A -C<32π ,∴-21<cos(A -C)≤1,22≤|b →+c →|<25.例4 已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos2CA -, f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°)cos()cos(2cos2cos2cos cos cos cos 21)(C A C A CA C A C A C A x f -++-+=⋅+⋅= 342122122-=-+-=x xx x , ∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1].又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1). (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2.故f (x )的值域为(-∞,-21)∪[2,+∞). 四、热身演练: 1.已知,那么下列命题成立的是( B ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( D ).AB C D3.函数的反函数是( A ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( C ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( D ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( A ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) .①②③④ ①函数y=-sin(k π+x)(k ∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点 (π/12,0)对称;③函数y=sin(2x+π/3)+sin(2x-π/3)的最小正周期是π; ④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .4389.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , RR h R k I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值. 解:(1)∵sinx+3cosx=2(21sinx+23cosx)=2 sin(x+3π),∴方程化为sin(x+3π)=-2a .∵方程sinx+3cosx+a=0在(0, 2π)内有相异二解,∴sin(x+3π)≠sin 3π=23. 又sin(x+3π)≠±1 (∵当等于23和±1时仅有一解),∴|-2a |<1,且-2a≠23, 即|a|<2,且a ≠-3.,∴a 的取值范围是(-2, -3)∪(-3, 2).(2) ∵α、 β是方程的相异解,∴sin α+3cos α+a=0 ① sin β+3cos β+a=0 ②①-②得(sin α- sin β)+3( cos α- cos β)=0, ∴ 2sin 2βα-cos2βα+-23sin 2βα+,sin2βα-=0,又sin2βα+≠0,∴tan2βα+=33, ∴tan(α+β)=2tan 22tan22βαβα+-+=3.11.求20sin 6420cos 120sin 3222+-的值.解:原式=20cos 20sin 20sin 20cos 32222-+64sin 220°=40sin 41)20sin 20cos 3)(20sin 20cos 3(2+-+64sin 220°=40sin 41)2030cos()2030cos(42-++64sin 220°=40sin 80sin 40sin 162+64sin 220°=32cos40°+64(240cos 1-)=32.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.解:要证α、β、γ成等差数列,∵α、β、γ是锐角,只要证:tan β=tan 2γα+.∵tan 2γα+=2tan2tan12tan2tanγαγα-+=2tan2tan12tan 2tan 33γγγγ-+=)2tan 1)(2tan 1()2tan 1(2tan222γγγγ+-+=212tan 12tan22γγ-=21tan γ= tan β.∴α、β、γ成等差数列.。
太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。
三角函数与数列的综合应用数学中,三角函数和数列是两个重要的概念。
三角函数是研究角和三角形的函数,而数列则是由一系列有规律的数字组成的数集。
在实际应用中,三角函数和数列常常相互结合,用于解决各种问题。
本文将探讨三角函数与数列的综合应用,并介绍其中一些典型的应用场景。
一、三角函数与数列在物理中的应用1. 周期性运动中的三角函数在物理学中,许多周期性运动可以用三角函数来描述。
例如,弹簧振子、摆钟的摆动等运动都具有周期性。
对于这些运动,可以通过正弦函数或余弦函数来建立模型,来描述运动的变化规律。
通过观察和分析周期性运动中的三角函数,可以预测物体的位置、速度和加速度等重要参数。
2. 波的传播与干涉在光学和声学中,波的传播和干涉是重要的现象。
波的传播可用三角函数的正弦图像来模拟,通过计算角度和距离等参数,可以预测波的强度和传播方向。
而波的干涉可通过数列的概念来描述,当两个或多个波在特定位置上相遇时,它们会干涉产生叠加效应,形成干涉图样。
通过分析数列的规律,可以推断出干涉图样的特点和分布规律。
二、三角函数与数列在工程中的应用1. 信号处理与滤波器设计在电子工程和通信工程中,信号处理和滤波器设计是关键技术。
三角函数可以用来对信号进行频谱分析,通过傅里叶变换等方法,将信号分解为各个频率分量。
数列则用于设计滤波器,通过选择合适的数列模型和参数,可以实现对信号的滤波和去噪。
三角函数与数列的综合应用可以在工程中实现高质量的信号处理和滤波效果。
2. 结构分析与强度计算在土木工程和建筑工程中,结构的分析和强度计算是重要的任务。
通过三角函数和数列的应用,可以建立结构的数学模型,并求解结构的应力、位移和频率等参数。
三角函数用于描述结构的刚度和振动特性,数列则用于建立结构的有限元模型,通过计算数列的极限和收敛性,可以评估结构的强度和安全性。
三、三角函数与数列在经济中的应用1. 周期性市场分析在金融和股票市场中,价格和交易量往往具有一定的周期性。
2021年名校课堂内外九年级数学上册沪科版安徽专版
第一部分:
一、整体解决:
1. 综合应用题:以实际问题和数学分析理解问题,合理设计数学模型,利用
变量表示,运用恰当的解题方法,建立代数表达式或统计模型,利用渐进解决或最优解书写问题。
2. 数列推理应用:病通过数学分析理解数列的规律,运用所学的相关概念和
知识,如枚逆数、比、倍数、公比、平方根等,来解决相关的问题。
3. 不等式与函数应用:以实际问题和数学分析理解问题,合理设计数学模型,利用不等式和函数来解决实际问题,把给定的实际问题转化为已知的不等式和函数来解决,即转换未知答案的实际问题为已知答案的“函数问题”来解决。
4. 三角函数应用:综合运用实际问题及数学分析理解问题,以解决实际问题
的旋转及其变换,运用余弦定理与正弦定理来解出一元三角函数恒等变换,以及求解实际问题中的定角型等数学模型。
5. 排列组合应用:结合实际问题和数学分析理解问题,根据所给情况,运用
组合原理和计数原理求出可能有多少种可能, matlab等计算机技术软件的应用,有效的求解一定范围内的计算问题。
二、实验室题:
1. 数学模拟实验:根据数学理论利用实验环境,进行实验测量数据,对所给
问题进行实验测量,分析实验数据,发现实验问题的规律,归纳总结出实验问题的解决方案。
2. 数学应用实验:以实验室环境,以及MATLAB等计算机技术软件,利用
建模方法如神经网络、梯度下降算法、支持向量机等机器学习建模方法,对实验数据进行分析,模拟现实或者理论建模问题,获得用于实际应用的结果。
高考冲刺 三角函数公式及应用编稿:孙永钊 审稿:张林娟【高考展望】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在(1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;(2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围(3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+, 221cos 1cos cos ,sin 2222αααα+-==等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
3.三角函数恒等变形的基本策。
数列综合应用+三角函数重点:掌握特殊数列的综合应用以及三角函数应用 规划:思维加解题方法以及应用技巧一. 数列综合应用:1.等差等比数列基本公式应用——求和,通项——等差中项 ——性质应用 2.特殊数列的通项求法——基本公式——递推法 ——累加法 ——累乘法——构造法。
3.Sn 的求法——基本公式法 ——倒序相加法——错位相减法 ——裂项相消法考点一:等差数列等比数列基本公式的应用1.【2012高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S =( )A.7B.15C.20D.252..【2012高考真题新课标理5】已知为等比数列,472a a +=,,则( ){}n a 568a a =-110a a +=()A 7 ()B 5 ()C -5 ()D -7.3.(广东卷)已知等比数列的公比为正数,且·=2,=1,则= A. B.C. D.2 4.(安徽卷)已知为等差数列,,则等于A. -1B. 1C.3D.7 5.(江西卷)公差不为零的等差数列的前项和为.若是的等比中项, ,则等于A. 18B. 24C. 60D. 90 . 6.(湖南卷)设是等差数列的前n 项和,已知,,则等于【 】A .13B .35C .49D . 63 7.(辽宁卷)已知为等差数列,且-2=-1, =0,则公差d =(A )-2 (B )- (C ) (D )28.(四川卷)等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 9. 设等差数列的前n 项和为。
若,,则当取最小值时,n 等于( )}{n a 3a 9a 25a 2a 1a 21222{}n a n n S 4a 37a a 与832S =10S n S {}n a 23a =611a =7S {}n a 7a 4a 3a 1212n a 1a 2a 1a 5a {}n a n S 111a =-466a a +=-n SA.6B.7C.8D.9 二、填空题1(浙江)设等比数列的公比,前项和为,则 . 2.(浙江)设等差数列的前项和为,则,,,成等差数列.类比以上结论有:设等比数列的前项积为,则, , ,成等比数列. 3.(山东卷)在等差数列中,,则.4.(宁夏海南卷)等比数列{}的公比, 已知=1,,则{}的前4项和= .{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( ) 5.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )6.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( ) 7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )三.解答题1. 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足+15=0。
(Ⅰ)若=5,求及a 1;{}n a 12q =n n S 44S a ={}n a n n S 4S 84S S -128S S -1612S S -{}n b n n T 4T 1612T T }{n a 6,7253+==a a a ____________6=a n a 0q >2a 216n n n a a a +++=n a 4S 56S S 5S 6S(Ⅱ)求d的取值范围。
2.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (1)求数列{b n}的通项公式;3. 已知等比数列{a n}的公比q=3,前3项和S3=13 3.(1)求数列{a n}的通项公式;(2)若函数f(x)=A sin(2x+φ)(A>0,0<φ<π)在x=π6处取得最大值,且最大值为a3,求函数f(x)的解析式.4.已知两个等比数列{a n},{b n},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. 若a=1,求数列{a n}的通项公式;5. 已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.6. 设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .7. 等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.考点二:数列的综合应用1. 设实数数列{a n }的前n 项和S n 满足S n +1=a n +1S n (n ∈N *). (1)若a 1,S 2,-2a 2成等比数列,求S 2和a 3;2.(本题满分12分)已知数列{}n a 的通项公式为,数列的前n 项和为,且满足(I )求的通项公式; (II )在{}n a 中是否存在使得19n a +是中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.3. 数列{n a } 中a 1=13,前n 项和n S 满足1n S +-n S =113n +⎛⎫ ⎪⎝⎭(n ∈*N ).( I ) 求数列{n a }的通项公式n a 以及前n 项和n S ;(II )若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。
4.已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;12-=n a n }{n b n T n n b T -=1}{n b }{n b二.三角函数的综合应用:解斜三角形(正余弦定理)+三角函数+向量1.(安徽卷理16)设是锐角三角形,分别是内角所对边长,并且。
(Ⅰ)求角的值;(Ⅱ)若,求(其中)。
2.(安徽卷文16)的面积是30,内角所对边长分别为,。
(Ⅰ)求;(Ⅱ)若,求的值。
ABC ∆,,a b c ,,A B C 22sin sin() sin() sin 33A B B Bππ=+-+A 12,AB AC a ==,b c b c <ABC ∆,,A B C ,,a b c 12cos 13A =AB AC 1c b -=a3.(辽宁卷文17)在中,分别为内角的对边,且 (Ⅰ)求的大小;(Ⅱ)若,是判断的形状。
4.(浙江卷文18)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足。
(Ⅰ)求角C 的大小; (Ⅱ)求的最大值。
5.(重庆卷文18)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且.(Ⅰ)求的值.(Ⅱ)求的值.ABC a b c 、、A B C 、、2sin (2)sin (2)sin a A b c B c b C =+++A sin sin 1B C +=ABC 222()4S a b c =+-sin sin A B+222333bc a +-=sin A 2sin()sin()441cos 2A B C Aππ+++-6.(重庆卷理16)设函数。
(Ⅰ)求的值域;(Ⅱ)记的内角A 、B 、C 的对边长分别为a ,b ,c ,若=1,,求a 的值。
7△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量=(2sinB ,2-cos2B ),)1),24(sin 2(2-+=Bn π,m ⊥n . (1)求角B 的大小;(2)若a =b=1,求c 的值.三角函数练习补充1.、 已知α为第三象限角,则2α所在的象限是( )(A)第一或第二象限 (B)第二或第三象限(C)第一或第三象限(D)第二或第四象限变式1、若α是第二象限角,则2α是第_____象限角。
()22cos 2cos ,32x f x x x Rπ⎛⎫=++∈ ⎪⎝⎭()f xABC ∆()f B变式2、若α角的终边落在第三或第四象限,则2α的终边落在( ) A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限2、(07全国1文2)α是第四象限角,12cos 13α=,则s i n α= ( ) A .513 B .513- C . 512D .512-3.(07全国 2 理1)sin2100 =( ) A23B-23 C 21D -214.角α的终边过点P (-8m ,-6cos60°)且cos α=-54,则m 的值是( )A.21 B.-21 C.-23D.235.(天津卷6)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是A sin(2)3y x π=-,x R ∈ B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈ D sin(2)32y x π=+,x R ∈6.(2007年辽宁卷19).(本小题满分12分)精品资料 欢迎下载 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.7.(天津卷17)(本小题满分12分) 已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的。