电子效应
- 格式:ppt
- 大小:596.00 KB
- 文档页数:20
电子效应电子效应:取代基不同而对分子性质产生的影响。
取代基效应可以分为两大类。
一类是电子效应,包括场效应和诱导效应、共轭效应。
电子效应是通过键的极性传递所表现的分子中原子或基团间的相互影响,取代基通过影响分子中电子云的分布而起作用。
另一类是空间效应,是由于取代基的大小和形状引起分子中特殊的张力或阻力的一种效应,空间效应也对化合物分子的反应性产生一定影响。
由于取代基的作用而导致的共有电子对沿共价键转移的结果。
诱导效应:当电负性不同的两个原子结合时,共价键就有一定的极性,再多原子分子中,这种极性会通过静电诱导作用而影响到它的相邻部分,使成键电子云偏移到电负性较大部分。
双原子分子:多原子分子:这种由于原子或基团电负性的影响沿着分子中的键传导,引起分子中电子云按一定方向转移或键的极性通过键链依次诱导传递的效应称为诱导效应(inductive effects )或I 效应。
这种效应如果存在于未发生反应的分子中就称为静态诱导效应。
诱导效应的传导是以静电诱导的方式沿着单键或重键传导的,只涉及到电子云密度分布的改变,引起键的极性改变,一般不引起整个分子的电荷转移、价态的变化。
这种影响沿分子链迅速减弱,实际上,经过三个原子之后,诱导效应已很微弱,超过五个原子便没有了。
诱导效应的方向:诱导效应的方向以氢原子作为标准。
-氯代乙酸的酸性。
氯原(位阻效应) 空间效应 取代基效应 空间传递场效应 (σ, π)( π-π, (σ- π,σ- p) 诱导效应 共轭效应 超共轭效应 电子效应 -+++¦Ä¦Ä¦Ä¦Ä¦Ä¦Ä¦ÄC X B AA B C ¦Ä¦Ä¦Ä¦Ä¦Ä¦Ä¦Ä+++-Y CX C H C Y _I ЧӦЧӦI +±È½Ï±ê×¼子取代越多,酸性越强。
有机化学中的电子效应电子效应是影响有机化合物反应活性和反应规律的重要因素之一,深入理解有机化学中的电子效应,可以对有机化学的认识由感性向理性方向发展。
电子效应包括诱导效应、共轭效应和超共轭效应;有时三种效应同时存在,表现共同作用的综合结果。
一、诱导效应(Inductive effect)诱导效应是电子效应的一种,是由路易斯(Lewis)首先提出。
路易斯认为,对于有机化合物,诱导效应是由一个电负性较强的原子 X 取代了碳原子上的氢原子后,在 C-X 键上产生一个极性分布,这个极性分布通过电性诱导作用,在分子中其它键上引起一系列的极性变化,结果在整个分子中产生一个向着 X 原子方向的较大范围的电子运动,这种电子运动称为诱导效应:δ+ C C X δC C 电负性比碳弱的元素原子也可以在分子中引起一系列的极性变化,只是所产生的诱导效应的方向刚好相反。
诱导效应是指在有机化合物分子中引入一个基团或原子后,由于原子的电负性差异,导致σ 键电子的移动,使分子中的电子云密度分布发生变化,而这种变化不但发生在直接相连的部分,也可以影响到不直接相连的部分。
这种因某一原子或基团的极性而引起电子沿碳链向某一方向移动的效应,称为诱导效应。
如氯丙烷分子中,取代在碳上的氯原子的电负性较强, C-Cl 键产生偶极,使与氯原子连接的第一个碳原子(α-碳原子)产生部分正电荷(δ+),也使第二个碳原子带有部分正电荷,第三个碳原子带有更少的正电荷,依次影响下去。
这种影响的特征是沿着碳链传递,并随着碳链的增长而迅速减弱或消失,一般传递到第三个碳原子就可忽略不计。
诱导效应是一种静电作用,共用电子并不能完全转移到另一原子,只是电子云密度分布发生变化,亦即键的极性发生变化。
δ+ δ+ δ+ δCH3—CH2—CH2→Cl 1.静态诱导效应(Is)诱导效应分为静态诱导效应和动态诱导效应。
静态诱导效应是由分子本身结构决定的,是分子本身所固有的极化效应,与由极性溶剂或反应试剂等产生的外电场无关。
化学反应中的电子效应化学反应是化学学科中最为基本、最为重要的研究对象之一,化学反应涉及的范围非常广泛,其中电子效应是化学反应中至关重要的一环。
电子效应是指化学反应中电子对反应的影响,不同的电子在不同的位置、状态、种类等情况下,其对反应过程的影响也不同。
一、电子对反应的影响电子在化学反应中的作用主要表现为它们所具有的电荷和动能。
电荷在反应中是用来催化或减缓反应的,而动能则是用来提供化学反应所需的活化能(也称为反应能垒)。
对于一个原子而言,如果外层电子较少,其对周围原子的影响就会比较小,因而在反应中的作用也比较弱。
相反,如果一个原子外层电子数量较多,其对周围原子的影响就会很大,因而在反应中的作用也会相对较强。
二、电子云重叠作用在化学反应中,电子云重叠作用对反应进程具有重要影响。
电子云重叠作用是指化学反应中两个不同的原子或分子互相靠近而固定在一起的现象。
在这种情况下,两个原子或分子的电子云会重叠部分区域,形成新的化学键。
这种新的化学键的形成过程常常会涉及到活性中间体,这些中间体常常是反应过程中的瓶颈,影响反应进程。
三、共价键的形成在化学反应中,原子核之间的共价键的形成也必须经过电子云的重叠。
当两个原子或分子之间有成对的电子重叠时,它们会共享一个原子核。
这时,这个相对稳定的化学键就会形成。
共价键的大小和方向取决于原子之间的距离和角度。
四、反应机理的揭示反应机理是指化学反应中各个阶段发生的具体步骤以及其所处的能量状态。
反应机理对于理解反应的本质和寻找新的反应途径、提高反应效率等,具有重要的意义。
电子效应是反应机理揭示的重要方面之一。
正是因为电子效应的存在,才有了各种新的化学反应机理的发现,这些反应机理大大扩展了化学反应的应用范围。
总之,电子效应是化学反应中不可或缺的一环。
对于化学家来说,只有深入了解电子效应的本质、作用和机理,才能更好地掌握化学反应的规律,发现新的化学反应途径和提高反应效率。
专题电子效应在共价键中,因成键原子的电负性不同,吸引电子的能力不同;或因分子的结构和成键方式的影响,电子云往往不是均匀地分布在成键原子周围,会出现电子云偏向某个原子,或发生电子云“离域”(绕多个原子核运动)。
这种电子的偏向或离域,称电子效应。
电子效应主要有诱导效应和共轭效应。
一、诱导电子效应:分子因成键原子的电负性不同,电子云偏向电负性大的元素,出现正负电荷中心不重合的现象,称诱导电子效应(I)。
电子云偏向电负性大的元素,为“吸电子”诱导效应(-I);电子云偏离的元素,为“给(推)电子”诱导效应(+I)。
如:效应基团推电子-R(烷基)吸电子-X、-OH、-OR、-NH2、-NO2、-SH、-SR、-CX3等原子的电负性越高,对应的基团吸电子诱导效应也会越强。
-C≡CH> -CH=CH> -CH2CH3对于不同杂化状态的碳原子来说,s成分越多,其吸电子能力越强诱导效应的特点:诱导效应可沿碳链的σ键依次传递,强度迅速减弱。
σ+表示部分正电荷,σσ+表示微弱的正电荷,一般超过3个σ键以后影响几乎消失。
因此通常只考虑与官能团直接相连的第一个碳原子所受的影响(即α-C的影响)。
形象地说,导效应是短程的,也是永恒的。
二、共轭电子效应:1、共轭体系及分类:分子中,多个相互连接的原子,各提供一条P轨道,两两间彼此平行重叠形成的π键称共轭π键(大π键)。
具有共轭π键的分子,其共轭部分又称共轭体系。
有共轭体系的分子,π电子云分布在参加共轭的原子上,称π电子的离域。
形成条件单双键交替或双键与苯环双键(苯环)相连的原子上的p轨道与π键的p轨道共轭效分类π-πp -πp -p例CH2=CH2稳定性顺序为π-π> p -π> p -p(1)π -π共轭:如:1,3-丁二烯。
实测分子在同一个平面上,4个碳原子都采取SP2杂化,每个C上未杂化的P轨道与该平面垂直,彼此间平行重叠成π键。
如图所示:共轭的结果:分子中4个碳原子提供4条P轨道,4个电子,形成共体系,表示为π44电子云围绕分子中的4个碳核运动(离域),有平均化趋势:在分子中的C2和C3间有π键性质,碳碳键键长也趋于平均化。
第六部分 电子效应有机化合物分子中,成键电子密度的分布是决定化学反应类型,反应部位,反应活性及产物稳定性的主要因素之一。
共价键中电子密度的分布状况,不但决定于键合原子的电负性,而且还受分子内部邻近共价键的极性和外界环境的影响。
这种由于内外因素影响而使共价键中的电子密度分布状况发生改变(或者说成键电子云发生偏移)的作用,称作电子效应。
电子效应主要有诱导效应和共轭效应两种。
一、 诱导效应的产生1. 诱导效应由于电负性不同的原子或基团的影响,而使邻近共价键的极性发生改变的效应,称作诱导效应,记作I 。
电负性比氢原子大的原子或基团,具有吸电子能力,叫吸电子基团;电负性比氢原子小的原子或基团,具有给电子(或斥电子)能力,叫给电子(或斥电子)基团。
由吸电子基团引起的诱导效应称作负诱导效应,记作-I ;由给电子(或斥电子)基团引起的诱导效应称作正诱导效应,记作+I 。
由分子结构本身具有的诱导效应称作静态诱导效应(永久的);受外界环境影响而产生的诱导效应称作动态诱导效应(暂时的)。
2. 诱导效应的特点(1) I 的强弱以氢为标准,基团的电负性与氢原子的电负性相差越大,I 越强。
基团的吸电子能力的强弱次序(略,见第二类定位基) 基团的给电子能力的强弱次序(略,见第一类定位基)(2) I 的传递I 可沿σ共价键依次传递,并随距离的增大迅速减弱。
通常经过三个原子后,即可忽略不计。
(3) I 具有叠加性如果有几个基团同时对某一共价键产生诱导效应,这个键所受的诱导效应是这几个基团产生的诱导效应的向量和。
二、 共轭效应1. 共轭体系共轭效应存在于共轭体系中,凡能发生电子离域,形成大π键的结构体系叫共轭体系。
共轭体系有以下几种:(1)π-π共轭RCH =CH -CH =CHR 'RCH =CH -CH =OCH =CHRN =OO(2) p-π共轭可分为多电子、缺电子、等电子三种情况。
例:(3)σ-π超共轭 例:(4) σ-p 超共轭 例:形成共轭体系的必要条件是:形成大π键的三个或三个以上原子共平面,且每个原子都有一条垂直于该平面的P 轨道,或与P 轨道邻近的饱和碳上具有碳氢σ键。
电⼦效应电⼦效应:共轭效应、诱导效应、超共轭效应。
⼀、共轭效应共轭体系: π-π共轭:π键 + π键(双键/三键 + 单键 + 双键/三键)。
例: CH2=CH-CH=CH2(1,3-丁⼆烯):C=C(碳碳双键) + C=C(碳碳双键)π-π共轭。
CH2=CH-CHO(丙烯醛):C=C(碳碳双键) + C=O(碳氧双键)π-π共轭。
CH2=CH-CN(丙烯腈):C=C(碳碳双键) + C≡N(碳氮三键)π-π共轭。
p-π共轭:p轨道 + π键。
多电⼦p-π共轭: 例:CH2=CH-Cl(氯⼄烯):3原⼦4电⼦。
等电⼦p-π共轭: 例:CH2=CH-CH2·(烯丙基⾃由基):3原⼦3电⼦。
缺电⼦p-π共轭: 例:CH2=CH-CH2+(烯丙基碳正离⼦):3原⼦2电⼦。
p-p共轭:p轨道 + p轨道。
例:C=O(羰基)。
共轭效应: 正效应(推电⼦效应/+C效应): 例:C=C(碳碳双键)、-CH3(甲基)。
负效应(吸电⼦效应/-C效应): 例:C=O(碳氧双键)、-CN(氰基)、-NO2(硝基)。
性质: ①共平⾯(sp2)。
②体系能量降低(共轭能/离域能)。
③键长趋于平均化(单键变短,双键变长)。
④正负电荷交替出现。
⑤沿共轭链传递,⼤⼩不变。
⼆、诱导效应共价键:极性共价键(同种元素)、⾮极性共价键(不同种元素)。
元素电负性差越⼤,极性越⼤。
电负性:s > sp > sp2 > sp3。
偶极矩:键偶极矩(键矩)、分⼦偶极矩。
物理意义:描述共价键/分⼦极性⼤⼩的物理量。
定义:电荷中⼼的电荷量与电荷中⼼之间的距离之积。
标⽮性:⽮量。
⼤⼩:µ = qd。
µ:偶极矩。
q:电荷中⼼的电荷量。
d:电荷中⼼之间的距离。
分⼦偶极矩 = 键偶极矩(键矩)的⽮量和。
单位: 国际单位:库·⽶(C·m)。
常⽤单位:德拜(德,D)。