2021高考数学新高考版一轮习题:专题9 第81练 随机事件的概率与古典概型 (含解析)
- 格式:docx
- 大小:694.68 KB
- 文档页数:6
1.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .互斥但不对立事件C .不可能事件D .以上都不对2.(2020·湖北省实验中学等六校联考)某射击手在一次射击中,射中10环、9环、8环的概率分别是0.20,0.30,0.10.则该射手在一次射击中成绩不够8环的概率为( )A .0.30B .0.40C .0.60D .0.903.(2019·九江统考)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这两数与居中阳数之和等于15的概率是( )A.12B.23C.14D.134.若某公司欲从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9105.(2019·福州模拟)从大小相同的红、黄、白、紫、粉5个小球中任选2个,则取出的两个小球中没有红色的概率为( )A.25B.35C.56D.9106.10张奖券中只有3张有奖,5人购买,每人1张,至少有1人中奖的概率是( ) A.310 B.112 C.12 D.11127.袋中共有7个球,其中3个红球,2个白球,2个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )A.435B.3135C.1835D.22358.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能的随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( )A .P 1·P 2=16B .P 1=P 2=12C .P 1+P 2=56D .P 1>P 29.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________. 10.将一颗骰子投掷两次分别得到点数a ,b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.11.(2020·江西名校联盟)已知某运动员每次投篮命中的概率都是0.4.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.25B .0.2C .0.35D .0.4 12.已知f 1(x )=x ,f 2(x )=sin x ,f 3(x )=cos x ,f 4(x )=lg(x +1+x 2),从以上四个函数中任意取两个相乘得到新函数,那么所得新函数为奇函数的概率为( )A.14B.13C.12D.2313.(2020·湖南长郡中学月考)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短的路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A.13B.23C.14D.3414.(2019·武汉调研)大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A.112 B.12 C.13 D.1615.若随机事件A ,B 互斥,且A ,B 发生的概率均不为0,P (A )=2-a ,P (B )=3a -4,则实数a 的取值范围为________.16.从-1,0,1,2这四个数中选出三个不同的数作为二次函数f (x )=ax 2+bx +c 的系数,从而组成不同的二次函数,其中使二次函数有两个零点的概率为________.答案精析1.B 2.B 3.D 4.D 5.B 6.D 7.D 8.ACD 9.23 10.51211.A 12.C 13.B [此人从小区A 前往小区H 的所有最短路径为A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H ,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,共4条.所以P (M )=46=23.即他经过市中心O 的概率为23.] 14.C [大学生小明与另外3个大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总数n =C 24A 33=36, 小明恰好分配到甲村小学包含的基本事件个数m =A 33+C 23A 22=12,∴小明恰好分配到甲村小学的概率为P =m n =1236=13.] 15.⎝⎛⎦⎤43,32解析 由题意可得⎩⎪⎨⎪⎧ 0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,∴⎩⎪⎨⎪⎧ 0<2-a <1,0<3a -4<1,2a -2≤1,解得43<a ≤32. 16.79解析 首先取a ,∵a ≠0,∴a 的取法有3种,再取b ,b 的取法有3种,最后取c ,c 的取法有2种,树状图如图所示:∴组成不同的二次函数共有3×3×2=18(个).若f (x )有两个零点,则不论a >0还是a <0,均应有Δ>0,即b 2-4ac >0, ∴b 2>4ac .结合树形图可得,满足b 2>4ac 的取法有6+4+4=14(种),∴所求概率P =1418=79.。
1.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对2.(2020·湖北省实验中学等六校联考)某射击手在一次射击中,射中10环、9环、8环的概率分别是0.20,0.30,0.10.则该射手在一次射击中成绩不够8环的概率为()A.0.30 B.0.40 C.0.60 D.0.903.(2019·九江统考)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.134.若某公司欲从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9105.(2019·福州模拟)从大小相同的红、黄、白、紫、粉5个小球中任选2个,则取出的两个小球中没有红色的概率为( )A.25B.35C.56D.9106.10张奖券中只有3张有奖,5人购买,每人1张,至少有1人中奖的概率是( ) A.310 B.112 C.12 D.11127.袋中共有7个球,其中3个红球,2个白球,2个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )A.435B.3135C.1835D.22358.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能的随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( )A .P 1·P 2=16B .P 1=P 2=12C .P 1+P 2=56D .P 1>P 29.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________. 10.将一颗骰子投掷两次分别得到点数a ,b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.11.(2020·江西名校联盟)已知某运动员每次投篮命中的概率都是0.4.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.25B .0.2C .0.35D .0.412.已知f 1(x )=x ,f 2(x )=sin x ,f 3(x )=cos x ,f 4(x )=lg(x +1+x 2),从以上四个函数中任意取两个相乘得到新函数,那么所得新函数为奇函数的概率为( )A.14B.13C.12D.2313.(2020·湖南长郡中学月考)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短的路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A.13B.23C.14D.3414.(2019·武汉调研)大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A.112 B.12 C.13 D.1615.若随机事件A ,B 互斥,且A ,B 发生的概率均不为0,P (A )=2-a ,P (B )=3a -4,则实数a 的取值范围为________.16.从-1,0,1,2这四个数中选出三个不同的数作为二次函数f (x )=ax 2+bx +c 的系数,从而组成不同的二次函数,其中使二次函数有两个零点的概率为________.答案精析1.B 2.B 3.D 4.D 5.B 6.D 7.D 8.ACD 9.23 10.51211.A 12.C 13.B [此人从小区A 前往小区H 的所有最短路径为A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H ,共6条. 记“此人经过市中心O ”为事件M ,则M 包含的基本事件为A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,共4条.所以P (M )=46=23.即他经过市中心O 的概率为23.] 14.C [大学生小明与另外3个大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总数n =C 24A 33=36, 小明恰好分配到甲村小学包含的基本事件个数m =A 33+C 23A 22=12,∴小明恰好分配到甲村小学的概率为P =m n =1236=13.] 15.⎝⎛⎦⎤43,32解析 由题意可得⎩⎪⎨⎪⎧ 0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,∴⎩⎪⎨⎪⎧ 0<2-a <1,0<3a -4<1,2a -2≤1,解得43<a ≤32. 16.79解析 首先取a ,∵a ≠0,∴a 的取法有3种,再取b ,b 的取法有3种,最后取c ,c 的取法有2种,树状图如图所示:∴组成不同的二次函数共有3×3×2=18(个).若f (x )有两个零点,则不论a >0还是a <0,均应有Δ>0,即b 2-4ac >0, ∴b 2>4ac .结合树形图可得,满足b 2>4ac 的取法有6+4+4=14(种),∴所求概率P =1418=79.。
第81练 随机事件的概率[基础保分练]1.给出下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n就是事件A 发生的概率; ③百分率是频率,但不是概率;④频率是不能脱离试验次数的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是频率的稳定值. 其中正确的是( ) A.①②③④ B.①④⑤ C.①②③④⑤D.②③2.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A.对立事件 B.互斥但不对立事件 C.不可能事件D.以上都不对3.从装有5个红球和3个白球的口袋内任取3个球,那么对立事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有两个红球4.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( ) A.12B.1532C.1132D.5165.(2019·湖州模拟)一张储蓄卡的密码由6位数字组成,每位数字都可以是0~9中的任意一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A.25B.310C.15D.1106.(2019·杭州模拟)某产品为甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( ) A.0.95B.0.97C.0.92D.0.087.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A.0.53B.0.5C.0.47D.0.378.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A.两个任意事件B.互斥事件C.非互斥事件D.对立事件9.据统计,某食品企业在一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1,则该企业在一个月内被消费者投诉不超过1次的概率为________.10.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________.[能力提升练]1.(2018·全国Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3B.0.4C.0.6D.0.72.(2019·杭州模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17B.1235C.1735D.1 3.(2019·绍兴上虞区模拟)掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”,若B 表示B 的对立事件,则一次试验中,事件A ∪B 发生的概率为( ) A.13B.12C.23D.564.(2019·舟山模拟)下列4个命题:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B );③若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )=1;④若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件,其中错误的有( )A.0个B.1个C.2个D.3个5.若随机事件A ,B 互斥,且A ,B 发生的概率均不为0,P (A )=2-a ,P (B )=3a -4,则实数a 的取值范围为________.6.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.答案精析基础保分练1.B 2.B 3.B 4.C 5.C 6.C 7.A 8.B 9.0.9 10.23能力提升练1.B [由题意可知不用现金支付的概率为1-0.45-0.15=0.4.]2.C [设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥. 由于P (A )=17,P (B )=1235.所以P (C )=P (A )+P (B )=17+1235=1735.]3.C [掷一个骰子的试验有6种可能结果.依题意P (A )=26=13,P (B )=46=23,∴P (B )=1-P (B )=1-23=13.∵B 表示“出现5点或6点”的事件,因此事件A 与B 互斥,从而P (A ∪B )=P (A )+P (B )=13+13=23.]4.D [依据互斥事件不一定是对立事件,但对立事件一定是互斥事件,故命题①正确;当A ,B 是两个互斥事件时,P (A +B )=P (A )+P (B ),故命题②是错误的;若事件A ,B ,C 彼此互斥且A ,B ,C 的并集是全集时,则P (A )+P (B )+P (C )=1,故命题③不正确;若事件A ,B 满足P (A )+P (B )=1,则A ,B 不一定是对立事件,故命题④也是错误的.故选D.]5.⎝ ⎛⎦⎥⎤43,32 解析 由题意可得⎩⎪⎨⎪⎧0<P A ,0<P B,P A +P B ,∴⎩⎪⎨⎪⎧0<2-a <1,0<3a -4<1,2a -2≤1,解得43<a ≤32.6.35解析由题意得a n=(-3)n-1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P=610=35.精美句子1、善思则能“从无字句处读书”。
专题11.4 随机事件的概率与古典概型1.(2021·全国·高一课时练习)某人进行打靶练习,共射击10次,其中有2次中10环,3次中9环,4次中8环,1次未中靶,则此人中靶的频率是( ) A .0.2 B .0.4 C .0.5 D .0.9【答案】D 【分析】直接利用频率的公式求解. 【详解】由题得这个人中靶的次数为2+3+4=9, 所以此人中靶的频率是90.910=. 故选:D2.(2021·全国·高一课时练习)已知A 与B 是互斥事件,且()0.3P A =,()0.1P B =,则()P A B +等于( ) A .0.1 B .0.3C .0.4D .0.8【答案】D 【分析】根据互斥事件概率的加法关系即可求解. 【详解】由题:A ,B 是互斥事件, 所以()()()P A B P A P B +=+, 且()()110.30.7P A P A =-=-=,, 则()()()0.8P A B P A P B ++==. 故选:D3.(2019·全国高考真题(文))两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .12【答案】D 【解析】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排练基础法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .4.(2021·广东顺德·高二期中)某同学做立定投篮训练,共两场,第一场投篮20次的命中率为80%,第二场投篮30次的命中率为70%,则该同学这两场投篮的命中率为( ) A .72% B .74%C .75%D .76%【答案】B 【分析】根据题意可直接计算. 【详解】该同学这两场投篮的命中率为2080%3070%74%2030⨯+⨯=+.故选:B.5.(2021·广东·佛山市南海区九江中学高二月考)甲,乙两人下棋,甲不输的概率是0.8,两人下成平局的概率是0.5,则甲胜的概率是( ) A .0.2 B .0.3C .0.5D .0.8【答案】B 【分析】甲不输分为甲胜乙和甲乙下成平局两种情况,其中甲胜乙和甲乙下成平局是互斥事件,根据互斥事件的概率加法公式进行求解即可. 【详解】甲不输棋的设为事件A ,甲胜乙设为事件B ,甲乙下成平局设为事件C ,则事件A 是事件B 与事件C 的和,显然B 、C 互斥,所以()()()P A P B P C =+,而()0.8P A =,()0.5P C =,所以()()()0.3P B P A P C =-=,所以甲胜的概率是0.3故选:B6.【多选题】(2021·广东·仲元中学高二开学考试)下列说法错误的是( ) A .随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率 B .某种福利彩票的中奖概率为11000,买1000张这种彩票一定能中奖 C .连续100次掷一枚硬币,结果出现了49次反面,则掷一枚硬币出现反面的概率为49100D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为明天不会降水 【答案】BCD 【分析】根据概率的定义和生活中的概率判断各选项的对错.由频率和概率的关系可知随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,A正确,某种福利彩票的中奖概率为11000,买1000张这种彩票不一定能中奖,B错误,掷一枚硬币出现反面的概率为12,C错误,某市气象台预报“明天本市降水概率为70%”,指的是明天有70%的可能会降水,D错误,故选:BCD.7.(2021·全国·高一课时练习)从某自动包装机包装的食品中,随机抽取20袋,测得各袋的质量(单位:g)分别为:492,496,494,495,498,497,503,506,508,507,497,501,502,504,496,492,496,500,501,499.根据抽测结果估计该自动包装机包装的袋装食品质量在497.5~501.5 g之间的概率为_______.【答案】0.25【分析】找到质量在497.5~501.5 g之间的袋数由频率可得答案.【详解】质量在497.5~501.5 g之间的有498,501,500,501,499共5袋,所以其频率为520=0.25,由此我们可以估计质量在497.5~501.5 g之间的概率为0.25.故答案为:0.25.8.(2021·全国·高一课时练习)从一批乒乓球产品中任取一个,若其质量小于2.45g的概率为0.22,质量不小于2.50g的概率为0.20,则质量在2.45~2.50g范围内的概率为___________.【答案】0.5829 50【分析】利用概率的性质计算出所求概率.【详解】依题意质量在2.45~2.50g范围内的概率为10.220.20.58--=.故答案为:0.589.(2021·全国·高一课时练习)操作1:将1000粒黑芝麻与1000粒白芝麻放入一个容器中,并搅拌均匀,再用小杯从容器中取出一杯芝麻,计算黑芝麻的频率.操作2:将1500粒黑芝麻与500粒白芝麻放入一个容器中,并搅拌均匀,再用小杯从容器中取出一杯芝麻,计算黑芝麻的频率.通过两次操作,你是否有所发现?若有一袋芝麻,由黑、白两种芝麻混合而成,你用什么方法估计其中黑芝麻所占的百分比?【答案】答案见解析利用频率估计概率的思想可得出结论. 【详解】通过两次操作,我们会有所发现,比如: 操作1中,黑芝麻的频率为10001100010002=+,操作2中,黑芝麻的频率为1500315005004=+,在搅拌均匀的前提下,由此可想到可将这袋芝麻搅拌均匀后从中取出一杯, 将此杯中黑芝麻的频率作为黑芝麻所占的百分比的估计.10.(2021·北京丰台·高二期中)从两个黑球(记为1B 和2B )、两个红球(记为1R 和2R )从中有放回地任意抽取两球.(1)用集合的形式写出试验的样本空间; (2)求抽到的两个球都是黑球的概率. 【答案】 (1)答案见解析 (2)14【分析】(1)根据题意,列出样本空间所有可能的情况即可;(2)列出抽到两个球都是黑球的所有可能情况,利用古典概型的概率公式计算即可 (1)试验的样本空间1112111221222122={(,),(,),(,),(,),(,),(,),(,),(,),B B B B B R B R B B B B B R B R Ω 1112111221222122(,),(,),(,),(,),(,),(,),(,),(,)}R B R B R R R R R B R B R R R R ;(2)设事件=A “抽到两个黑球”,则对于有放回简单随机抽样, 11122122{(,),(,),(,),(,)}A B B B B B B B B =.因为样本空间Ω中每一个样本点的可能性都相等,所以这是一个古典概型. 因此(A)41P(A)()164n n ===Ω. 所以抽到的两个球都是黑球的概率为14练提升1.(2021·北京丰台·高二期中)袋子中有4个大小质地完全相同的球,其中3个红球,1个黄球,从中随机抽取2个球,则抽取出的2个球恰好是1个红球1个黄球的概率是( ) A .13B .12C .23D .1【答案】B 【分析】分别求出从有4个大小质地完全相同的球的袋子中随机抽取2个球和抽取出的2个球恰好是1个红球1个黄球的基本事件的个数,再根据古典概型公式即可得解. 【详解】解:从有4个大小质地完全相同的球的袋子中随机抽取2个球有246C =种情况,抽取出的2个球恰好是1个红球1个黄球有11313C C ⋅=,所以抽取出的2个球恰好是1个红球1个黄球的概率是3162=.故选:B.2.(2021·北京市第八中学怡海分校高二期中)某人打靶时连续射击两次,下列事件中与事件“只有一次中靶”互斥而不对立的是( ) A .至少一次中靶 B .至多一次中靶 C .至多两次中靶 D .两次都中靶【答案】D 【分析】事件A 和B 互斥而不对立所需要的条件是()p A B =∅且()1p A B ≠,一一验证A 、B 、C 、D 四个选项,选出答案. 【详解】设“只有一次中靶”为事件A设“至少一次中靶”为事件B ,则事件B 包含:“有一次中靶”和“有两次中靶”两种情况,,显然()p A B ≠∅,不互斥,A 选项错误;设“至多一次中靶”为事件C ,则事件C 包含事件:“有一次中靶”和“有零次中靶”,显然()p A C ≠∅,不互斥,B 选项错误;设“至多两次中靶”为事件D ,则事件D 包含事件:“有两次中靶”,“有一次中靶”和“有零次中靶”,显然()p A D ≠∅,不互斥,C 选项错误;设“两次都中靶”为事件E ,则()p A E =∅,()1p A E ⋃≠,满足互斥而不对立所需要的条件,故选项D 正确. 故选:D3.(2021·全国·高三月考(文))2019年版高中数学人教A 版教材一共有5本.分别是《必修第一册》《必修第二册》《选择性必修第一册》《选择性必修第二册》《选择性必修第三册》,在一次数学新教材培训会议上,主持人刚好带了全套5本新教材,现从中随机抽出了3本送给在场的培训学员,则恰有1本选择性必修的新教材被抽到的概率为( ) A .35B .310 C .13D .15【答案】B 【分析】应用组合数计算随机抽出了3本恰有1本选择性必修的新教材的抽取方法,再应用古典概型的概率求法求出概率即可. 【详解】由题设,随机抽出了3本恰有1本选择性必修的新教材的概率为212335310C C C =.故选:B4.(2021·广西南宁·高三月考(文))哥尼斯堡“七桥问题”是著名的古典数学问题,它描述的是:在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图1).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?瑞士数学家欧拉于1736年研究并解决了此问题,他把该问题归结为如图2所示的“一笔画”问题,并证明了上述走法是不可能的.假设在图2所示七条线中随机选取两条不同的线,则这两条线都与A 直接相连的概率为( )A .27B .37C .12D .1021【答案】D 【分析】结合古典概型公式和组合公式直接求解. 【详解】由题可知,若从7条线路中选2条,则有2721C =种方法,若选出的两条线都与A 相连,则共有2510C =种方法,则这两条线都与A 直接相连的概率为252101021C P C ==.故选:D5.(2021·广东·广州市协和中学高二期中)在某次围棋比赛中,甲、乙两人进入最后决赛.比赛取三局二胜制,即先胜两局的一方获得比赛冠军,比赛结束.假设每局比赛甲胜乙的概率都为13,且各局比赛的胜负互不影响,在甲已经先胜一局的情况下,甲获得冠军的概率为()A.49B.59C.527D.23【答案】B【分析】甲获得冠军有两种情况, 第一种情况:第二局甲获胜获得得比赛冠军, 第二种情况:第二局甲输,第三局甲获胜获胜得比赛冠军,求出两种情况下的概率,相加即可.【详解】在甲已经先胜一局的情况下,甲获得冠军有两种情况,第一种情况:第二局甲获胜获得得比赛冠军,11 3P=第二种情况:第二局甲输,第三局甲获胜获胜得比赛冠军1212 339P=⨯=,故甲获得冠军的概率为125 399 +=.故选:B.6.(2021·广东·仲元中学高一期末)数学多选题A,B,C,D四个选项,在给出的选项中,有多项符合题目要求.全都选对的得5分,部分选对的得2分.有选错的得0分.已知某道数学多选题正确答案为BCD,小明同学不会做这道题目,他随机地填涂了1个,或2个,或3个选项,则他能得分的概率为()A.12B.716C.25D.25【答案】A【分析】利用组合数求得随机地填涂了1个或2个或3个选项,每种可能性都是相同的,然后列举计数能得分的涂法种数,求得所求概率.【详解】解:随机地填涂了1个或2个或3个选项,共有12344414C C C++=种涂法,能得分的涂法为(BCD),(BC),(BD),(CD),B,C,D,共7种,故他能得分的概率为71 142=.故选:A.7.(2021·上海市松江二中高二月考)将4个1和2个0随机排成一行,则2个0不相邻的概率为___________. 【答案】23【分析】首先排好4个1,,即可产生5个空,再利用插空法求出2个0相邻与2个0不相邻的排法,再利用古典概型的概率公式计算可得; 【详解】解:将4个1和2个0随机排成一行,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1021053=+ 故答案为:238.(2021·北京市第八中学怡海分校高二期中)1.一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋子中依次不放回地摸出2个球.(1)写出试验的样本空间;(2)求摸出的2个球颜色相同的概率. 【答案】(1){(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} (2)13【分析】(1)列举法把所有情况写出来,用集合表示,就是试验的样本空间;(2)有古典概率的公式进行计算 (1)试验的样本空间为:{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),Ω=(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}(2)设事件A =“摸出的两个球的颜色相同” 所以{}(1,2),(2,1),(3,4),(4,3)A =, ()4n A =,()12n Ω=所以()41()()123n A P A n ===Ω 9.(2021·浙江·台州市路桥区东方理想学校高二月考)从编号为A 、B 、C 、D 的4名男生和编号为m、n的2名女生中任选3人参加演讲比赛.(1)把选中3人的所有可能情况一一列举出来;(2)求所选3人中恰有一名女生的概率;(3)求所选3人中至少有一名女生的概率【答案】(1)答案见解析(2)3 5(3)4 5【分析】(1)列举法写出基本事件;(2)结合古典概型概率公式即可求出结果;(3)结合古典概型概率公式即可求出结果.(1)设4名男生分别为A,B,C,D,两名女生分别为m,n,则从6名学生中任3人的所有情况有:ABC,ABD,ABm,ABn,ACD,ACm,ACn,ADm,ADn,Amn,BCD,BCm,BCn,BDm,BDn,Bmn,CDm,CDn,Cmn,Dmn,共20种,(2)由(1)可知共有20种情况,其中所选3人中恰有一名女生的有12种,所以所求概率为123 205,(3)由(1)可知共有20种情况,所选3人中至少有一名女生的有16种,所以所求概率为164 20510.(2021·陕西·西安中学高二月考(理))福州某中学高一(10)班男同学有45名,女同学有15名,老师按照性别分层抽样的方法组建了一个由4人组成的课外学习兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定从该组内选出2名同学分别做某项试验,求选出的2名同学中恰有1名女同学的概率;(3)试验结束后,同学A得到的试验数据为68,70,71,72,74;同学B得到的试验数据为69,70,70,72,74;请问哪位同学的试验更稳定?并说明理由.【答案】(1)男、女同学的人数分别为3,1(2)12(3)B同学的实验更稳定,理由见解析【分析】(1)按照分层抽样的按比例抽取的方法,男女生抽取的比例是45:15,4人中的男女抽取比例也是45:15,从而解决;(2)先算出选出的两名同学的基本事件数,再算出恰有一名女同学事件数,两者比值即为所求概率;(3)欲问哪位同学的试验更稳定,只要算出他们各自的方差比较大小即可.(1)解:因为每个同学被抽到的概率为416015P==,课外兴趣小组中男、女同学的人数分别为3,1;(2)解:把3名男同学和1名女同学记为a1,a2,a3,b,则选取两名同学的基本事件有(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种,其中有一名女同学的有3种,所以,选出的两名同学中恰有一名女同学的概率为131 62P==;(3)解:16870717274715x++++==,26970707274715x++++==,∴2222221(6871)(7071)(7171)(7271)(7471)45s-+-+-+-+-==,222222(6971)2(7071)(7271)(7471)3.25s-+⨯-+-+-==,∴B同学的实验更稳定.1.(2021·山东·高考真题)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是()A.29B.23C.14D.12【答案】D【分析】应用古典概型的概率求法,求甲、乙两位同窗恰好选取同一处景点的概率即可.练真题【详解】甲、乙两位同窗选取景点的种数为224⨯=,其中甲、乙两位同窗恰好选取同一处景点的种数为2,∴甲、乙两位同窗恰好选取同一处景点的概率为2142=. 故选:D2.(2020·海南省高考真题)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62% B .56% C .46% D .42% 【答案】C 【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-= 所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C.3.(2020·全国高考真题(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A .15B .25 C .12D .45【答案】A 【解析】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况, 由古典概型的概率计算公式知,取到3点共线的概率为21105=. 故选:A4.(2019·江苏高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710. 【解析】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=. 5.(2020·江苏省高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==. 故答案为:19. 6.(2017·山东高考真题(文))某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A 1,但不包括B 1的概率. 【答案】(1)15P = ;(2)29P =【解析】(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}{}{}{}{}121323111213212223313233,,,,,,,,,,,,,,,,,,,,,,,,A A A A A A AB A B A B A B A B A B A B A B A B {}{}{}121323,,,,,B B B B B B ,共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{}{}{}121323,,,,,A A A A A A ,共3个,则所求事件的概率为:31155P ==. (Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}111213212223313233,,{,},,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B ,共9个,包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个, 所以所求事件的概率为:29P =.。
专题十一 概率与统计11.1 随机事件、古典概型基础篇 固本夯基考点一 随机事件的概率1.(2022届江苏百校联考,6)一次劳动实践活动中,某同学不慎将两件次品混入三件正品中,它们形状、大小完全相同,该同学采用技术手段进行检测,恰好三次检测出两件次品的概率为( ) A.15B.14C.25D.310答案 D2.(2019课标Ⅰ理,6,5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132 D.1116答案 A3.(2018课标Ⅱ理,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ) A.112 B.114 C.115 D.118答案 C4.(2021广东韶关一模,5)假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为( ) A.925 B.25 C.35 D.34答案 C5.(2020广州番禺检测,10)中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A.15 B.14 C.13 D.12答案 D6.(多选)(2022届河北张家口宣化一中考试,11)甲、乙两人进行围棋比赛,共比赛2n(n ∈N *)局,且每局甲获胜的概率和乙获胜的概率均为12,如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( ) A.P(2)=18B.P(3)=1132C.P(n)=12(1−C 2nn 22n )D.P(n)的最大值为14答案 BC7.(2022届广东茂名五校联考,16)田忌赛马的故事出自司马迁的《史记》.齐王,田忌分别有上、中、下等马各一匹.赛马规则:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局.最后以获胜局数多者为胜.记齐王、田忌的马匹分别为A 1,A 2,A 3和B 1,B 2,B 3.每局比赛之间都是相互独立的,而且不会出现平局.用P A i B j (i,j ∈{1,2,3})表示马匹A i 与B j 比赛时齐王获胜的概率,若P A 1B 1=0.8,P A 1B 2=0.9,P A 1B 3=0.95,P A 2B 1=0.1,P A 2B 2=0.6,P A 2B 3=0.9,P A 3B 1=0.09,P A 3B 2=0.1,P A 3B 3=0.6,则一场比赛共有 种不同的比赛方案;在所有的方案中,有一种方案田忌获胜的概率最大,此概率为 . 答案 6;0.8198.(2022届河北唐山十一中9月月考,17)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 解析 (1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负轮空胜,负轮空胜胜,概率分别为116,18,18. 因此丙最终获胜的概率为18+116+18+18=716. 考点二 古典概型1.(2022届广东省级联测,6)十进制的算筹计数法是中国数学史上一个伟大的创造,算筹实际上是一根根同长短的小木棍.下图是利用算筹表示数字1~9的一种方法.例如:3可表示为“”,26可表示为“”,现用6根算筹表示不含0的无重复数字的三位数,算筹不能剩余,则这个三位数能被3整除的概率为( )A.14B.16C.512D.724答案 A2.(2021全国甲理,10,5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A.13B.25C.23D.45答案 C3.(2020课标Ⅰ文,4,5分)设O 为正方形ABCD 的中心,在O,A,B,C,D 中任取3点,则取到的3点共线的概率为( )A.15B.25C.12D.45答案 A4.(2021广东汕头一模,8)在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则在选考的科目中甲、乙两位同学恰有两科相同的概率为( ) A.14B.13C.512D.12答案 C5.(2017天津文,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45B.35C.25D.15答案 C6.(2022届河北邢台入学考试,14)小华、小明、小李、小章去A,B,C 三个工厂参加社会实践,要求每个工厂都有人去,且这四人都在这三个工厂实践,则小华和小李都没去B 工厂的概率是 . 答案718 7.(2020江苏,4,5分)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 答案198.(2018上海,9,5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示). 答案15综合篇 知能转换考法一 古典概型概率的求法1.(2021湖南岳阳一模,5)“华东五市游”作为中国一条精品旅游路线,一直受到广大旅游爱好者的欢迎.现有4名高三学生准备2021年高考后到“华东五市”中的上海市、南京市、苏州市、杭州市四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为( ) A.716 B.916 C.2764 D.81256答案 B2. (2021湖南长郡十五校第二次联考,4)十二生肖作为中国民俗文化的代表,是中国传统文化的精髓,很多人把生肖作为春节的吉祥物,以此来表达对新年的祝福.某课外兴趣小组制作了一个正十二面体模型(如图),并在十二个面上分别雕刻了十二生肖的图案,作为春节的吉祥物.2021年春节前,兴趣小组的2个成员将模型随机抛出,希望能抛出牛的图案朝上(即牛的图案在最上面),2人各抛一次,则恰好出现一次牛的图案朝上的概率为( )A.112 B.143144 C.1172 D.23144答案 C3.(2019课标Ⅱ文,4,5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15答案 B4.(2019课标Ⅲ文,3,5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.12答案 D5.(2022届河北邢台9月联考,16)从3名男生、2名女生中选出2人参加数学竞赛,则选出的这2人性别不一样的概率为 . 答案35 6.(2022届江苏第一次月考,14)一只口袋内装有4个白球,5个黑球,若将球不放回地随机一个一个摸出来,则第4次摸出的是白球的概率为 . 答案497.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 答案3108.(2021辽宁百校联盟调研,14)某中学为了解学生学习物理的情况,抽取了100名物理成绩在60~90分(满分为100分)之间的学生进行调查,将这100名学生的物理成绩分成了六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],绘成频率分布直方图,如图所示.从成绩在[70,80)的学生中任意抽取2人,则成绩在[75,80)的学生中恰好有一人的概率为 .答案2449考法二 求复杂的互斥事件的概率1.(2018课标Ⅲ文,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 答案 B2.(2021沈阳期末,5)已知某药店只有A,B,C 三种不同品牌的N95口罩,甲、乙两人到这个药店各购买一种品牌的N95口罩,若甲,乙买A 品牌口罩的概率分别为0.2,0.3,买B 品牌口罩的概率分别为0.5,0.4,则甲,乙两人买相同品牌的N95口罩的概率为( ) A.0.7 B.0.65 C.0.35 D.0.26 答案 C3.(2020湖南衡阳一模)我国古代有着辉煌的数学研究成果,《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》等10部专著是了解我国古代数学的重要文献,这10部专著中5部产生于魏晋南北朝时期,某中学拟从这10部专著中选择2部作为“数学文化”课外阅读教材,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ) A.79B.29C.49D.59答案 A4.(多选)(2022届江苏新高考第一次月考,10)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ) A.2个球都是红球的概率为16B.2个球中恰有1个红球的概率为12C.至少有1个红球的概率为56D.2个球不都是红球的概率为13 答案 AB创新篇 守正出奇创新 生活中的概率问题1.(2021湖南衡阳联考,3)衡阳市在创建“全国卫生文明城市”活动中,大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”“可回收垃圾”“其他垃圾”三种不同的垃圾桶,一天,居民小贤提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有一袋垃圾投对的概率为( ) A.19B.16C.13D.12答案 D2.(2022届山东济宁第一中学开学考试,13)为庆祝建党100周年,讴歌中华民族伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,共有50道党史题,其中35道单选题、10道多选题和5道判断题,其中小王每道单选题答对的概率为0.8,多选题答对的概率为0.7,判断题答对的概率为0.9,则他随机抽取一道题,答对的概率为 . 答案 0.793.(2021重庆二模,14)已知某信号传送网络由信号源甲和三个基站乙、丙、丁共同构成,每次信号源甲等可能地向三个基站中的一个发送信号,乙基站接收到的每条信号等可能地传送给丙基站和丁基站中的一个,丙基站接收到的每条信号只会传送给丁基站,丁基站只接收信号.对于信号源甲发出的一条信号,丙基站能接收到的概率为 . 答案12 4.(2022届江苏百校联考,19)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30人以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解析 (1)记“选出的2所学校参与旱地冰壶人数在30人以下”为事件A,参与旱地冰壶人数在30人以下的学校共6所,所以P(A)=C 62C 102=13.因此选出的2所学校参与旱地冰壶人数在30人以下的概率为13.(2)答案不唯一.答案示例1:可以认为甲同学在指导后总考核为“优”的概率发生了变化.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,所以有理由认为指导后总考核达到“优”的概率发生了变化.答案示例2:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定指导后总考核达到“优”的概率发生了变化.。
随机事件的概率和古典概率知识回顾:1.随机事件的概率:(1)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数;称事件A 出现的比例nn A f A n =)(为事件A 出现的频率. (2)概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率)(A f n 稳定在某个常数上,把这个常数记作)(A P ,称为事件A 的概率 (3)频率和概率的区别和联系区别:频率是随着试验次数的改变而改变,即频率是随机的,在试验前是不确定的,而概率是一个确定的常数,是客观存在的,与试验次数无关,是随机事件自身的一个属性.联系:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,所以可用频率作为概率的近似值,当试验次数越来越多时频率向概率靠近,概率是频率的近似值.二、概率的基本性质:1.事件A,B 的关系和运算如下:(1)如果事件A 发生,则事件B 一定发生,这时我们说事件B 包含事件A (或事件A 包含于事件B ),记为B ⊇A (或A ⊆B ),不可能事件记为φ,任何事件都包含不可能事件.(2)如果事件A 发生,则事件B 一定发生,反之也成立,(若B ⊇A 同时A ⊆B ),我们说这两个事件相等,即A=B.(3)如果某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与B 的并事件(或和事件),记为A ∪B 或A +B.(4)如果某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与B 的交事件(或积事件),记为A ∩B 或AB.(5)如果A ∩B 为不可能事件(A ∩B=φ),那么称事件A 与事件B 互斥,即事件A 与事件B 在任何一次试验中不会同时发生.(6)如果A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件,即事件A 与事件B 在一次试验中有且仅有一个发生.2. 基本性质:(1)概率的取值范围是:[0,1],即1)(0≤≤A P ,必然事件概率是1,不可能事件概率是0.(2) 互斥事件的概率的加法公式:当事件A 与事件B 互斥时,A ∪B 发生的频数等于事件A 发生的频数与事件B 发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A ∪B)=P(A)+P(B),这就是概率的加法公式.(3) 若A ∩B 为不可能事件,A ∪B 为必然事件则称事件A 与事件B 互为对立事件,此时P(A ∪B)=1, 即P(A)+P(B) =1.三、古典概率模型1.古典概率模型特点:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.2.古典概率模型公式:(1)基本事件总数为n 的古典概型中,每个基本事件的概率为n1 (2)对于古典概型,任何事件的概率()A P =基本事件的总数包含的基本事件的个数A知识运用:1.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是51100;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果18次,则出现1点的频率是950. 其中正确命题有________.2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立......的两个事件是 A.至少有1个白球;都是白球 B.至少有1个白球;至少有1个红球C .恰有1个白球;恰有2个白球 D.至少有1个白球;都是红球3.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求全班人数,并计算频率分布直方图 中[]80,90间的矩形的高; (2)若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,则在抽取的试卷中,求至少有一份分数在[]90,100之间的概率. (1)由茎叶图知,分数在[)50,60之间的频0.008100.08⨯=,全班人数为2250.08=. 所以分数在[)80,90之间的频数为25271024----= 频率分布直方图中[)80,90间的矩形的高为4100.01625÷=. (2)将[)80,90之间的4个分数编号为1,2,3,4,[]90,100之间的2个分数编号为5,6,在[]80,100之间的试卷中任取两份的基本事件为:()1,2,()1,3,()1,4,()1,5,()1,6,()2,3,()2,4,()2,5,()2,6,()3,4,()3,5,()3,6()4,5,()4,6,()5,6共15个,其中,至少有一个在[]90,100之间的基本事件有9个,故至少有一份分数在[]90,100之间的频率是90.615=.4.将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
专题11.4 随机事件的概率与古典概型【考纲解读与核心素养】1.掌握事件、事件的关系与运算,掌握互斥事件、对立事件、独立事件的概念及概率的计算.了解条件概率的概念.2.了解概率与频率概念,理解古典概型,会计算古典概型中事件的概率. 3.培养学生的数学运算、逻辑推理、数据分析等核心数学素养. 4. 高考预测:(1)考查互斥事件、对立事件; (2)考查古典概型概率的计算.(3)以互斥事件、对立事件的概率为主.客观题与大题都有可能考查,在大题中更加注重实际背景,考查分析、推理能力.近几年浙江省考查较少. 5.备考重点:(1) 掌握互斥事件、对立事件等概念; (2) 掌握古典概型概率的计算方法.【知识清单】知识点1. 随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件. (1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示.2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()An n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率. 3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(AB φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件. 4.事件的关系与运算定义符号表示包含关系 如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B A ⊇ (或A B ⊆)相等关系 若B A ⊇且A B ⊇,那么称事件A 与事件B 相等 A B = 并事件 (和事件) 若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件)A B(或A B +)交事件 (积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件) A B (或AB )互斥事件 若A B 为不可能事件,那么称事件A 与事件B 互斥A B φ= 对立事件若AB 为不可能事件,A B 为必然事件,那么称事件A 与事件B 互为对立事件 A B φ=且A B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A .[来源:Z#xx#]由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0. 5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.[来源:学.科.网] (3)不可能事件的概率:()0p A =. (4)互斥事件的概率加法公式: ①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-. 知识点2. 古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=nm . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性. ②每个基本事件发生的可能性相等,即等可能性. 概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.[常用结论] 1.频率与概率频率是随机的,不同的试验,得到频率也可能不同,概率是频率的稳定值,反映了随机事件发生的可能性的大小. 2.互斥与对立对立事件一定互斥,但互斥事件不一定对立. 3.概率加法公式的注意点(1)要确定A ,B 互斥方可运用公式.(2)A ,B 为对立事件时并不一定A 与B 发生的可能性相同,即P (A )=P (B )可能不成立.【典例剖析】高频考点一 : 随机事件间的关系【典例1】1.(2020·云南丽江第一高级中学高二期中)抽查8件产品,设“至少抽到3件次品”为事件M ,则M 的对立事件是( ) A .至多抽到2件正品 B .至多抽到2件次品 C .至多抽到5件正品D .至多抽到3件正品【典例2】(2019·四川高二期中)袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是( ) A .恰有1个白球和全是白球B .至少有1个白球和全是黑球C.至少有1个白球和至少有2个白球D.至少有1个白球和至少有1个黑球【总结提升】事件间的关系的判断方法1.判断事件间的关系时,可把所有的试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件间的关系.2.对立事件一定是互斥事件,也就是说不互斥的两个事件一定不是对立事件,在确定了两个事件互斥的情况下,就要看这两个事件的和事件是不是必然事件,这是判断两个事件是否为对立事件的基本方法.判断互斥事件、对立事件时,注意事件的发生与否都是对于同一次试验而言的,不能在多次试验中判断.3.判断互斥、对立事件的2种方法:(1)定义法: 判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件(2) 集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集即:事件A,B对应的基本事件构成了集合A,B,则A,B互斥时,A∩B=∅;A,B对立时,A∩B=∅且A∪B =U(U为全集).两事件互斥是两事件对立的必要不充分条件.【变式探究】1.(2019·湖南长郡中学高二期中)从装有2个白球和3个黑球的口袋内任取两个球,那么下列事件中是互斥而不对立的事件是()A.“恰有两个白球”与“恰有一个黑球”B.“至少有一个白球”与“至少有一个黑球”C.“都是白球”与“至少有一个黑球”D.“至少有一个黑球”与“都是黑球”2.(2020·云南高二月考)从装有2个红球和2个白球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球高频考点二:随机事件的频率与概率【典例3】(2020·湖南高一期末)下列说法正确的是()A.随着试验次数的增加,频率一般会越来越接近概率B.连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C.某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水【典例4】(2016高考新课标2文选)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 5≥保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数0 1 2 3 4 5≥频数60 50 30 30 20 10(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求()P A的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求()P B的估计值;【总结提升】1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的.而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.3.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键是由所给频率分布表、频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数.【变式探究】1.(2020·黑龙江哈尔滨三中高一开学考试)将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数10 20 30 40 50 60 70 80 90 100下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750;③当投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③2.(2019·沈阳模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?高频考点三 : 互斥事件与对立事件的概率【典例5】(2018·全国高考真题(文))若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A .0.3B .0.4C .0.6D .0.7【典例6】(2019·辽宁高一期末)一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是( ) A .0.3 B .0.55C .0.7D .0.75【规律方法】1. 概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.2. 判断事件关系时要注意 (1)利用集合观点判断事件关系;(2)可以写出所有试验结果,看所求事件包含哪几个试验结果,从而判断所求事件的关系. 3.对于互斥事件要抓住如下的特征进行理解: 第一,互斥事件研究的是两个事件之间的关系; 第二,所研究的两个事件是在一次试验中涉及的; 第三,两个事件互斥是从试验的结果不能同时出现来确定的4.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,事件A 的对立事件记作A ,从集合的角度来看,事件A 所含结果的集合正是全集U 中由事件A 所含结果组成集合的补集,即AA U =,A A φ=,对立事件一定是互斥事件,但互斥事件不一定是对立事件.事件,A B 的和记作A B +,表示事件,A B 至少有一个发生.当,A B 为互斥事件时,事件A B +是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的.当计算事件A 的概率()p A 比较困难时,有时计算它的对立事件A 的概率则要容易些,为此有()()1P A P A =-.这不仅体现逆向思维,同时对培养思维的灵活性是非常有益的.求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先去求此事件的对立事件的概率. 对于n 个互斥事件12,,,n A A A ,其加法公式为()()()()1212n n p A A A p A p A p A =+++.分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.【变式探究】1.(2018·北京高二学业考试)某次抽奖活动共设置一等奖、二等奖两类奖项,已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.72.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?【特别提醒】求复杂的互斥事件的概率的方法(1)直接法(2)间接法(正难则反)高频考点四:简单的古典概型【典例7】(2019·全国高考真题(文))生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A .23B .35 C .25D .15【典例8】(2017课标II ,文11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110 B. 15 C. 310 D. 25【总结提升】1.计算古典概型事件的概率可分三步(1)判断本次试验的结果是否是等可能的,设出所求的事件为A ;(2)分别计算基本事件的总个数n 和所求的事件A 所包含的基本事件个数m ;(3)利用古典概型的概率公式P (A )=mn求出事件A 的概率.2. 解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算. 【变式探究】1.(2017·全国高考真题(文))从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .252.(浙江高考真题(文))从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于 _________ . 【特别提醒】1. 古典概型中基本事件的探求方法(1)枚举法:适合给定的基本事件个数较少且易一一列举出的.(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x ,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件的个数时,可利用排列或组合的知识. 2.古典概型中的基本事件都是互斥的 高频考点五 : 复杂的古典概型【典例9】通过手机验证码登录哈喽单车App ,验证码由四位数字随机组成,如某人收到的验证码1234(,,,)a a a a 满足1234a a a a <<<,则称该验证码为递增型验证码,某人收到一个验证码,那么是首位为2的递增型验证码的概率为________【典例10】(浙江高考真题(文))一个袋中装有大小相同的黑球、白球和红球. 已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是,从中任意摸出2个球,至少得到1 个白球的概率是. 求:(1)从中任意摸出2个球,得到的都是黑球的概率;(2)袋中白球的个数 【特别提醒】1.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.2.注意区别排列与组合,以及计数原理的正确使用. 【变式探究】1.(2020·浙江高三月考)在浙江省新高考选考科目报名中,甲、乙、丙、丁四位同学均已选择物理、化学作为选考科目,现要从生物、政治、历史、地理、技术这五门课程中选择一门作为选考科目,则不同的选报方案有___________种(用数字作答);若每位同学选报这五门学科中的任意一门是等可能的,则这四位同学恰好同时选报了其中的两门课程的概率为____________.2.(2019·甘肃兰州一中高三期中(理))甲、乙两校各有3名教师报名支教.若从这6名教师中任选2名,选出的2名教师来自同一学校的概率为________. 高频考点六 : 古典概型的交汇问题【典例11】设连续掷两次骰子得到的点数分别为m ,n ,令平面向量(),a m n =,()1,3b =-,则事件“a b ⊥”发生的概率为__________;事件“a b ≤”发生的概率为__________.【典例12】(2019·上海市建平中学高三)已知方程221x y a b+=表示的曲线为C ,任取,{1,2,3,4,5}a b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【特别提醒】求解古典概型的交汇问题,关键是把相关的知识(平面向量、直线与圆、函数、统计等)转化为事件,然后利用古典概型的有关知识解决,其解题流程为:11 / 11【变式探究】1.若随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2,()34P A a P B a =-=-,则实数a 的取值范围为_____.2.(2019·上海市控江中学高三)甲乙两人分别投掷两颗骰子与一颗骰子,设甲的两颗骰子的点数分别为a 与b ,乙的骰子的点数为c ,则掷出的点数满足||a b c -=的概率为________(用最简分数表示).。
1.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()
A.对立事件B.互斥但不对立事件
C.不可能事件D.以上都不对
2.(2020·湖北省实验中学等六校联考)某射击手在一次射击中,射中10环、9环、8环的概率分别是0.20,0.30,0.10.则该射手在一次射击中成绩不够8环的概率为()
A.0.30 B.0.40 C.0.60 D.0.90
3.(2019·九江统考)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这两数与居中阳数之和等于15的概率是()
A.12
B.23
C.14
D.13
4.若某公司欲从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A.23
B.25
C.35
D.910
5.(2019·福州模拟)从大小相同的红、黄、白、紫、粉5个小球中任选2个,则取出的两个小球中没有红色的概率为( )
A.25
B.35
C.56
D.910
6.10张奖券中只有3张有奖,5人购买,每人1张,至少有1人中奖的概率是( ) A.310 B.112 C.12 D.1112
7.袋中共有7个球,其中3个红球,2个白球,2个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )
A.435
B.3135
C.1835
D.2235
8.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能的随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( )
A .P 1·P 2=16
B .P 1=P 2=12
C .P 1+P 2=56
D .P 1>P 2
9.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )
=12,P (B )=16
,则出现奇数点或2点的概率为________. 10.将一颗骰子投掷两次分别得到点数a ,b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.
11.(2020·江西名校联盟)已知某运动员每次投篮命中的概率都是0.4.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为( )
A .0.25
B .0.2
C .0.35
D .0.4
12.已知f 1(x )=x ,f 2(x )=sin x ,f 3(x )=cos x ,f 4(x )=lg(x +1+x 2),从以上四个函数中任意取两个相乘得到新函数,那么所得新函数为奇函数的概率为( )
A.14
B.13
C.12
D.23
13.(2020·湖南长郡中学月考)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短的路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )
A.13
B.23
C.14
D.34
14.(2019·武汉调研)大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A.112 B.12 C.13 D.16
15.若随机事件A ,B 互斥,且A ,B 发生的概率均不为0,P (A )=2-a ,P (B )=3a -4,则实数a 的取值范围为________.
16.从-1,0,1,2这四个数中选出三个不同的数作为二次函数f (x )=ax 2+bx +c 的系数,从而组成不同的二次函数,其中使二次函数有两个零点的概率为________.
答案精析
1.B 2.B 3.D 4.D 5.B 6.D 7.D 8.ACD 9.23 10.512
11.A 12.C 13.B [此人从小区A 前往小区H 的所有最短路径为A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H ,共6条. 记“此人经过市中心O ”为事件M ,则M 包含的基本事件为A →B →O →E →H ,
A →
B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,共4条.所以P (M )=46=23
.即他经过市中心O 的概率为23
.] 14.C [大学生小明与另外3个大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,
基本事件总数n =C 24A 33
=36, 小明恰好分配到甲村小学包含的基本事件个数m =A 33+C 23A 22=12,
∴小明恰好分配到甲村小学的概率为P =m n =1236=13
.] 15.⎝⎛⎦⎤43,32
解析 由题意可得⎩⎪⎨⎪⎧ 0<P (A )<1,0<P (B )<1,
P (A )+P (B )≤1,
∴⎩⎪⎨⎪⎧ 0<2-a <1,0<3a -4<1,
2a -2≤1,
解得43<a ≤32
. 16.79
解析 首先取a ,∵a ≠0,∴a 的取法有3种,再取b ,b 的取法有3种,最后取c ,c 的取法有2种,树状图如图所示:
∴组成不同的二次函数共有3×3×2=18(个).
若f (x )有两个零点,则不论a >0还是a <0,均应有Δ>0,即b 2-4ac >0, ∴b 2>4ac .结合树形图可得,满足b 2>4ac 的取法有6+4+4=14(种),
∴所求概率P =1418=79.。