标准差与方差PPT课件
- 格式:ppt
- 大小:755.00 KB
- 文档页数:1
方差和标准差都是用来衡量随机变量波动大小的量。
方差(variance)是将各个变量值与其均值离差平方的平均数。
它反映了样本中各个观测值到其均值的平均离散程度。
方差的数学定义为:设X 是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。
标准差(standard deviation)是方差的平方根。
它也是一种平均数,是各数据偏离平均数的距离(离均差)的平均数。
标准差的数学定义为:设X 是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X- E(X)]^2}的平方根为X的标准差,记为σ(X)。
方差和标准差都用于描述数据的离散程度,但方差是标准差的平方,更适合用于比较数据的离散程度。
一般来说,如果方差或标准差越大,说明数据的波动越大;反之,如果方差或标准差越小,说明数据的波动越小。
心理和教育方面的实验或调查所得到的数据,大都具有随机变量的性质。
而对这些随机变量的描述,仅有前一章所讲集中趋势的度量是不够的。
集中量数只描述数据的集中趋势和典型情况,它还不能讲明一组数据的全貌。
数据除典型情况之外,还有变异性的特点。
关于数据变异性即离中趋势进行度量的一组统计量,称作差异量数,这些差异量数有标准差或方差,全距,平均差,四分差及各种百分差等等。
第一节方差与标准差方差(Variance)也称变异数、均方。
作为统计量,常用符号S2表示,作为总体参数,常用符号σ2表示。
它是每个数据与该组数据平均数之差乘方后的均值,即离均差平方后的平均数。
方差,在数理统计中又常称之为二阶中心矩或二级动差。
它是度量数据分散程度的一个特别重要的统计特征数。
标准差(Standarddeviation)即方差的平方根,常用S或SD表示。
假设用σ表示,那么是指总体的标准差,本章只讨论对一组数据的描述,尚未涉及总体咨询题,故本章方差的符号用S2,标准差的符号用S。
符号不同,其含义不完全一样,这一点瞧读者能够给予充分的注重。
一、方差与标准差的计算(一)未分组的数据求方差与标准差全然公式是:〔3—la〕〔3—1b〕表3—1讲明公式3—1a与3—1b的计算步骤表3—1未分组的数据求方差与标准差应用3—1公式的具体步骤:①先求平均数X=36/6=6;②计算X i-X;③求(Xi-X)2即离均差x2;④将各离均差的平方求和(∑x2);⑤代进公式3—1a与3—1b求方差与标准差。
具体结果如下:S2(二)已分组的数据求标准差与方差数据分组后,便以次数分布表的形式出现,这时原始数据不见了,假设计算方差与标准差可用下式:(3—3a)(3—3b)式中d=(Xc-AM)/i,AM为估量平均数Xc为各分组区间的组中值f为各组区间的次数N=Σf为总次数或各组次数和i为组距。
下面以表1—8数据为例,讲明分组数据求方差与标准差的步骤:表3—2次数分布表求方差与标准差具体步骤:①设估量平均数AM,任选一区间的Xc充任;②求d⑧用f乘d,并计算Σfd;④用d与fd相乘得fd2,并求Σfd2;⑤代进公式计算。
方差与标准差方差和标准差是统计学中常用的概念,用于描述数据集中的离散程度。
它们是衡量数据分布的重要指标,对研究和分析数据具有重要意义。
本文将介绍方差和标准差的概念、计算方法及其在实际应用中的意义。
一、方差的定义和计算方法方差(variance)是一组数据与其算术平均值之间的差异程度的度量。
它描述了数据相对于其均值的散布程度。
方差的计算方法如下:1. 对于总体方差:方差 = [(x1-μ)² + (x2-μ)² + ... + (xn-μ)²] / n其中,x1、x2、...、xn是总体中的各个观测值,μ是总体的均值,n是总体观测值的个数。
2. 对于样本方差:方差 = [(x1-s)² + (x2-s)² + ... + (xn-s)²] / (n-1)其中,x1、x2、...、xn是样本中的各个观测值,s是样本的均值,n是样本观测值的个数。
方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。
二、标准差的定义和计算方法标准差(standard deviation)是方差的平方根,它代表了数据的平均离散程度。
标准差的计算方法如下:1. 对于总体标准差:标准差= √方差2. 对于样本标准差:标准差= √方差标准差与方差具有相同的变异性度量,但由于标准差和原始观测值具有相同的单位,因此在实际应用中更常用。
三、方差与标准差的意义和应用1. 数据分布描述:方差和标准差可用于描述数据的分布情况,通过衡量数据的离散程度,可以了解数据的集中程度和分散程度。
比如,在销售额的统计分析中,方差和标准差可以反映不同产品销售的波动情况,从而帮助企业进行销售策略的制定和调整。
2. 预测及决策支持:方差和标准差还可以用于预测和决策支持。
在金融领域,标准差常用于度量资产收益的风险。
投资者可以通过计算不同投资组合的标准差,选择合适的投资组合,以实现资产配置的优化。