5
1×0.544 6=0.108 92≈0.11.
5
S乙2 甲0, 的极差为11.94-11.01=0.93,乙的极差为0.
1.(2012·达州中考)2011年达州市各县(市、区)的户籍人口统 计表如下:
则达州市各县(市、区)人口数的极差和中位数分别是( )
(A)145万人 130万人
(B)103万人 130万人
S甲2 S…乙2 .……………………7分 答:乙山上的杨梅产量较稳定.
看平均数,还要比较方 差的大小.
………………………………………………………………8分
【规律总结】
计算方差时的规律
【跟踪训练】
4.(2012·盐城中考)甲、乙、丙、丁四人进行射击测试,每人10
次射击的平均成绩恰好都是9.4环,方差分别是 S甲2 0.90,S乙2 1.22,
S丙2 0.43,S丁2 1.68.在本次射击测试中,成绩最稳定的是( )
(A)甲
(B)乙
(C)丙
(D)丁
【解析】选C.成绩的稳定性决定于方差的大小,方差越小的越稳
定,故选C.
5.已知一个样本1,3,2,5,4,则这个样本的标准差为________.
【解析】样本的平均数 x 1 3 1 4 2 5 3,
【规范解答】 (1)甲山上4棵树的产量分别为: 50千克、36千克、40千克、34千克, ∴甲山产量的样本平均数为: x 50 36 40 34… …40(…千…克…);…………………1分
4
乙山上4棵树的产量分别为: 36千克、40千克、48千克、36千克,
∴乙山产量的样本平均数为: x 36 40 48 36… …40…(千…克…);……………………2分
方差与标准差 【例2】(8分)王大伯几年前承办了甲、乙两片荒山,各栽100棵 杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情 况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如 折线统计图所示. (1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨 梅的产量总和;