DC-DC电感选型指南
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
DC/DC模块电源以其体积小巧、性能卓异、使用方便的显着特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。
怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,谈一谈这方面的问题,以供广大系统设计人员参考。
DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器。
具体是指通过自激振荡电路把输入的直流电转变为交流电,再通过变压器改变电压之后再转换为直流电输出,或者通过倍压整流电路将交流电转换为高压直流电输出。
1 电源模块选择需要考虑的几个方面额定功率封装形式温度范围与降额使用隔离电压功耗和效率2 额定功率一般建议实际使用功率是模块电源额定功率的30~80%为宜(具体比例大小还与其他因素有关,后面将会提到。
),这个功率范围内模块电源各方面性能发挥都比较充分而且稳定可靠。
所有模块电源均有一定的过载能力,但是仍不建议长时间工作在过载条件下,毕竟这是一种短时应急之计。
3 封装形式DC/DC变换器的外形尺寸和输出形式差异很大。
小功率产品采用密封外壳,外形十分纤小;大功率产品常采用quarter-brick 或half-brick的形式,电路或暴露,或以外壳包裹。
在选择时,需要注意以下两个方面:第一,引脚是否在同一平面上;第二,是否便于焊接。
SMT 形式的变换器必须要符合IEC191-6:1990标准的要求,该标准对SMT器件引脚的共面问题做出了严格限定。
如果变换器不能满足这个要求,就需要为其设计专门的焊接装配工艺,这会增加装配时间,提高生产成本。
模块电源的封装形式多种多样,符合国际标准的也有,非标准的也有,就同一公司产品而言,相同功率产品有不同封装,相同封装有不同功率,那么怎么选择封装形式呢?主要有三个方面:① 一定功率条件下体积要尽量小,这样才能给系统其他部分更多空间更多功能;② 尽量选择符合国际标准封装的产品,因为兼容性较好,不局限于一两个供货厂家;③ 应具有可扩展性,便于系统扩容和升级。
dcdc 电路共模电感dcdc电路中的共模电感是一种非常重要的元件,它在电路中起着关键的作用。
本文将从共模电感的定义、原理、应用以及选型等方面进行详细阐述。
我们来了解一下共模电感的定义。
共模电感是指在直流-直流转换器(DC-DC转换器)中用于滤除共模噪声的电感。
共模噪声是指同时作用于电路两个输入端的噪声信号,它们具有相同的幅度和相位。
共模电感的主要作用是阻止共模噪声进入电路,从而保证电路的正常工作。
接下来,我们来了解一下共模电感的工作原理。
共模电感的工作原理基于电感的特性。
当共模噪声进入电路时,共模电感会产生反向的电流,从而抵消共模噪声。
共模电感的大小取决于电路的设计和要求,一般来说,共模电感的阻抗应与电路输入端的负载匹配。
共模电感在电路中有着广泛的应用。
首先,它常用于直流-直流转换器中,用于滤除共模噪声。
在高频电路中,共模电感也常被用于滤波器和功率放大器中,起到抑制共模噪声的作用。
此外,共模电感还常被用于干扰抑制、电源线滤波、通信设备、医疗设备等领域。
在选用共模电感时,需要考虑一些关键因素。
首先是电感值的选择,通常选择的电感值应能满足电路的要求。
其次是电感的尺寸和结构,要根据电路的空间和布局要求来选择合适的尺寸和结构。
此外,还需要考虑电感的性能参数,如电感的电流、频率响应等。
最后,还需要考虑电感的可靠性和成本等因素。
总结起来,共模电感在dcdc电路中是一种非常重要的元件。
它能够有效滤除共模噪声,保证电路的正常工作。
共模电感的工作原理是利用电感的特性,通过产生反向电流来抵消共模噪声。
在选用共模电感时,需要考虑电感值、尺寸、性能参数以及可靠性和成本等因素。
通过合理选择和应用共模电感,可以提高电路的性能和稳定性,减少噪声对电路的干扰。
DC-DC 电源芯片的选取和使用要点汉邦高科:晏超为了解决芯片的散热问题,就不断提高生产工艺,降低热阻,同时也不断通过技术层面提高芯片效率从而减少发热量。
这句话让我们可以知道首先产生发热的根源在于效率不高,其次解决的办法有提高效率和降低器件热阻两种方案。
DC-DC 电源芯片的选取和使用要点。
一、电源芯片型号选取要考虑的要点。
1)输入输出电压;2)负载电流大小;3)输出的通道数量;4)成本;5)封装形式;6)效率;二、实际应用中元件选取的计算。
1)分压电阻R1、R2的选取。
FBFB out FB out V V V R R R R R V V -=⇒+=*21221*其中V Out 为输出电压,V FB 为芯片自身预设的参考电压,一般为0.8V 。
预设R2之后确定R1。
为了提高系统环路的稳定性一般加大R1和R FB 的值。
2)外置电感的选取a 、感量计算如下:)1(.inout L s out V V I f V L -∆= f s 为芯片工作的开关频率,具体查看Datasheet 。
L I ∆为输出电感上的纹波电流,一般情况L I ∆= (30%~50%)I OUT ;b 、电感电流的选取依据:)1(..2inout s out PEAK V V L f V Iout I -+= 其中I PEAK 为电感的峰值电流,I out 为所需的负载电流。
电感的感量并不是必须完全按照理论计算的来的,只要有个大概就好,对输出的影响主要在纹波,只要满足系统电源要求就可以。
对于公司来说电感尽量选取一致。
三、轻载高效的方法。
1)降低芯片的待机功耗,;2)进行零点检测,关闭IC 内部不需要的模块;3)降低开关频率,进入打嗝模式;4)进入休眠模式;四、实际应用中PCB Layout 中要注意事项。
1)输入电容尽量靠近Vin引脚;2)芯片Vcc 的滤波电容尽量靠近引脚;3)加粗地线宽度或者接地铜皮面积。
如果不同层,要多打过孔;4)反馈电阻尽量靠近FB引脚,从R FB到FB引脚的连线尽量短,因为这段线极易受到干扰,对输出特性影响较大。
DCDC转换器如何选择电感与电容DC-DC转换器是一种将直流电压转换为不同电压级别的器件。
在选择电感和电容时,需要考虑转换器的工作频率、功率要求、效率、体积、成本等因素。
接下来将从这些方面详细介绍如何选择电感和电容。
1.工作频率:工作频率是选择电感和电容的关键因素之一、转换器的工作频率通常为几十千赫兹到几兆赫兹,不同频率的转换器对电感和电容的要求也不同。
一般来说,工作频率较高的转换器需要使用低电感值和小电容值的元件,而工作频率较低的转换器则需要使用高电感值和大电容值的元件。
2.功率要求:转换器的功率要求是选择电感和电容的另一个关键因素。
功率要求高的转换器通常需要使用高电流承受能力的电感和电容,以保证转换器的稳定性和可靠性。
此外,功率要求高的转换器还需要考虑元件的能量损耗、温升等因素,以确保转换器的高效率运行。
3.效率:效率是转换器的重要指标之一,也是选择电感和电容的重要考虑因素。
较高的效率意味着转换器的能量损耗较小,因此在选择电感和电容时应考虑其损耗等效系列电阻和损耗等效并联电阻等参数。
通常选择较低电感值和小电容值的元件可以提高转换器的效率。
4.体积:转换器的体积是另一个需要考虑的因素。
较小体积的转换器往往需要较小的电感和电容。
因此,在选择电感和电容时应考虑其尺寸和重量,以满足转换器体积小、重量轻的要求。
5.成本:成本是选择电感和电容的重要考虑因素之一、较大电感值和较大电容值的元件通常成本较高,而较小电感值和较小电容值的元件成本相对较低。
在选择电感和电容时,应根据转换器的成本预算,选择性价比高的元件。
综上所述,选择适合的电感和电容需要综合考虑工作频率、功率要求、效率、体积和成本等因素。
需要注意的是,不同转换器的特性和要求有所差异,因此在选择电感和电容时应根据具体的应用场景进行综合考虑,并多进行实验验证。
DCDC电路应该是硬件设计中最常见的电路,而Buck用得尤其多,下文介绍下电路中电感选型的几个思考。
BUCK电路选型的最重要的两个参数:电感值,电感电流。
电感电流一般有2个值:Isat是指饱和电流,一般指饱和电流(Saturation Current)电感值下降到30%(不同厂家定义有所不同,一般为10%-30%)的电流。
---dcdc电路中感电流瞬间值不能超过这个。
Irms是温升电流,也就是加电流后,电感产品自我温升温度不超过40度时的电流。
---dcc电路中电感电流有效值不能超过这个.电感值计算公式:Lmin=(Vin-Vout)*Vout/(△I*f*Vin) ---同步BUCK,异步需要加入二极管的电压步骤:(1)确认输出电流Iout(2)确认电感值Lmin=(Vin-Vout)*Vout/(△I*f*Vin)一般来说△I(上图的Ipp)取20%-30%的Iout(最大输出电流),f为DCDC开关频率(3)根据Lmin选取L,一般略取大一点(4)通过上面的公式计算△I,ImaxImax=Iout+1/2 △I,饱和电流要大于Imax(5)确认电感的饱和电流要大于Imax温升电流要大于Iout确认输出电流以上公式网上颇多,如果只写到这里,那么本文也没什么价值。
主要是有一个问题,上述的Iout到底取多少呢?是DCDC芯片的最大输出电流能力,还是实际工作过程中真正使用的最大电流呢?笔者认为应是DCDC芯片的最大输出电流能力,比如2A的DCDC芯片,那么这里Iout取2A。
理由如下:假设实际要用到2A电流,与芯片能力是一样的,那么不管取芯片电流能力还是实际使用电流,按照公式算得电感值是相同的,用这个电感可以设计出输出2A的DCDC电路。
这时如果用这个电路接入500mA的负载,即实际输出电流是500mA,难道就不能用了,显然是可以的。
由公式知道,L与输出电流成反比,如果按照实际电流计算,在接小负载时,比如200mA,那么算得的L值是2A时的10倍,电感值大,体积就大,这是我们不希望的。
DCDC功率电感(Inductor)选型
1、功率电感分类
2、电感主要参数
3 、DCDC感量计算
电感过小——输出纹波大
电感过大——动态响应不好,
电感太大,太小可能会改变DCDC的工作模式
电感饱和后,电流会急剧增加,使电感温度升高,同时会影响其它元件的寿命
步骤:
(1)确认输出电流
(2)确认电感值
Lmin=(Vin-Vout)*Vout/(△I*f*Vin)
一般来说△I取20%-30%的Iout ,f为DCDC开关频率
(3)根据Lmin选取L,一般略取大一点
(4)通过上面的公式计算△I,Imax
Imax=Iout+1/2 △I
(5)确认电感的饱和电流要大于Imax
温升电流要大于Iout
(6)实测
因为电感的交流参数都是在100K正弦波下所测的,实际应用中会有区别,所以最后需要通过实测来确认电感是否适合。
实例:
例子:SY8120 12V转 2A输出开关频率 500K
Lmin=()*(2**500K*12)=
综合考虑后,选取
△I=(23%)
Imax=2+2=
SWPA6045S 4R7MT/顺络
饱和电流
温升电流
经验:建议最大电流+△I要求小于电感饱和电流的80% 所以可选取使用
(7)下表1为△I的理论计算值
4 、感值标注、常见封装
5、某电感型号表。
DCDC电感选型指南DC/DC电感是直流-直流转换电路中的重要元件,主要用于存储和传递能量。
选用合适的电感对于电路的性能和效率至关重要。
本文将为您介绍DC/DC电感的选型指南,帮助您在设计中选择正确的电感。
1.了解电路工作条件在选择电感之前,首先需要了解电路的工作条件。
这包括输入电压范围、输出电压范围、输出电流范围以及开关频率等。
根据这些参数可以确定电感所需的工作模式(连续模式或间断模式)和承载能力。
2.确定电感的额定电流电感的额定电流是电感能够承受的最大电流。
在计算额定电流时,需要考虑开关频率、电感的内阻和温度等因素。
一般来说,额定电流应大于或等于电路中的最大输出电流,以确保电感工作在安全范围内。
3.选择合适的工作模式根据电路的工作参数,确定电感的工作模式。
连续模式适用于较低的开关频率和较小的电流波动,而间断模式适用于较高的开关频率和较大的电流波动。
选择合适的工作模式可以提高电路的效率和稳定性。
4.计算电感值根据电路的输入电压范围、输出电压范围和开关频率,可以计算出所需的电感值。
一般来说,电感值越大,电感能存储的能量就越多。
但是,较大的电感值也会带来较大的尺寸和成本。
所以需要在尺寸、成本和性能之间进行权衡。
5.选择合适的磁芯材料DC/DC电感通常采用磁芯来增加电感的存储能量。
选择合适的磁芯材料可以提高电感的效率和性能。
常见的磁芯材料包括铁氧体、烧结铁氧体、金属材料等。
不同的磁芯材料具有不同的磁导率、饱和磁感应强度、磁阻等特性。
根据电路要求选择适合的磁芯材料。
6.考虑温升和寿命在选择电感时,需要考虑电感的温升和寿命。
温升是指电感在工作过程中的温度升高,而寿命是指电感的使用寿命。
高温会影响电感的性能和寿命。
因此,在选择电感时,需要考虑电感的温升和寿命要求,选择合适的电感。
7.参考厂商规格书最后,在选型过程中,可以参考厂商的规格书和应用手册。
规格书通常提供了电感的详细性能参数、选型指南和使用注意事项等信息。
DC-DC电路中电感的选择深⼊剖析电感电流DC/DC电路中电感的选择原⽂:Fairchild Semic on ductor AB-12 : In sight into In ductor Curre nt翻译:frm(注:只有充分理解电感在DC/DC电路中发挥的作⽤,才能更优的设计DC/DC 电路。
本⽂还包括对同步DC/DC及异步DC/DC既念的解释。
)简介在开关电源的设计中电感的设计为⼯程师带来的许多的挑战。
⼯程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺⼨等等。
本⽂专注于解释:电感上的DC电流效应。
这也会为选择合适的电感提供必要的信息。
理解电感的功能电感常常被理解为开关电源输出端中的LC滤波电路中的L (C是其中的输出电容)。
虽然这样理解是正确的,但是为了理解电感的设计就必须更深⼊的了解电感的⾏为。
在降压转换中(Fairchild 典型的开关控制器),电感的⼀端是连接到DC输出电压。
另⼀端通过开关频率切换连接到输⼊电压或GNDV JMA S悟怕1 DC Output Voltage* State 2Figure 1. Basic Switching Action of a Converter在状态1过程中,电感会通过(⾼边“high-side ”)MOSFE连接到输⼊电压。
在状态2过程中,电感连接到GND由于使⽤了这类的控制器,可以采⽤两种⽅式实现电感接地:通过⼆极管接地或通过(低边“ low-side ”)MOSFE接地。
如果是后⼀种⽅式,转换器就称为“同步(synchronus )”⽅式。
现在再考虑⼀下在这两个状态下流过电感的电流是如果变化的。
在状态1过程中,电感的⼀端连接到输⼊电压,另⼀端连接到输出电压。
对于⼀个降压转换器,输⼊电压必须⽐输出电压⾼,因此会在电感上形成正向压降。
相反,在状态2过程中,原来连接到输⼊电压的电感⼀端被连接到地。
对于⼀个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。
怎样选择DC-DC 转换器的电感1,尺寸考虑关于电感磁芯的尺寸、材料和磁导率的详细比较将不赘述,较高的磁芯高度使得使用较短的铜线成为可能-使用更大的直径或较少的匝数,或二者兼具。
较小的电感值还带来较大的峰值电流,它必须保持低于DC-DC 转换器的最低电流限制以防止输出不稳定。
2,磁芯的考虑采用铁粉芯的电感,它们提供更好的温度稳定性并且相对于其他可选磁芯成本更低。
其他选择是钼坡莫合金粉末(MPP)、气隙铁氧体以及铁硅铝磁合金(Kool Mm)或高磁通磁环。
鉴于混合镍、铁和钼粉末的成本,MPP通常是最昂贵的选择,铁硅铝磁合金是一种次昂贵的复合粉末磁芯。
在多数电源中常见的罐形、E和EI形磁芯为气隙铁氧体。
这些外形可以在必要时提供灵活性和可变性,但是成本更高。
高磁通磁环通常用于滤波电感而不是电源变换电路3,性能评估和效率比较在输出电流较低时,适当选用较高感值的电感能获得更好的效率,在输出电流较高时,适当选用较低感值的电感能获得更好的效率(注:相同磁心尺寸),反之将效率偏低,这是因为高感值电感所具有的较大串联电阻导致了这种效率的差异。
在电感量相同时,尺寸较大、直流电阻较低的电感在整个输出电流范围内可提供较高的效率提升。
另一种性能折衷可以从电感电流、电感电压和输出电压纹波的典型波形中看出。
使用电感量较小的电感产生较高的峰值电流。
输出电压纹波相对偏高,而使用电感量较大的电感产生的纹波相对偏小。
峰值电流对输出电容充电并且提供负载电流。
在电容的ESR上会流入和流出较大的电流,这将产生较高的输出电压纹波。
如果必要,可以通过使用较大的输出电容来降低该纹波。
4,负载瞬态响应不同的电感提供不同的负载瞬态响应(IC和补偿网络同样对该响应有贡献)。
DC-DC 转换器需要外部补偿,但是其他开关稳压器IC包含内部补偿,它们通常指定允许的电感值范围。
从另一方讲,外部补偿允许设计更加灵活。
如果遇到电感出现工频啸叫,可以通过调整补偿网络的参数来解决。
1.概念:DC-DC指直流转直流电源(Direct Current)。
是一种在直流电路中将一个电压值的电能变为另一个电压值得电能的装置。
如,通过一个转换器能将一个直流电压(5.0V)转换成其他的直流电压(1.5V或12.0V),我们称这个转换器为DC-DC转换器,或称之为开关电源或开关调整器。
DC-DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容器构成。
在讨论DC-DC转换器的性能时,如果单针对控制芯片,是不能判断其优劣的。
其外围电路的元器件特性,和基板的布线方式等,能改变电源电路的性能,因此,应进行综合判断。
DC-DC转换器的使用有利于简化电源电路设计,缩短研制周期,实现最佳指标等,被广泛用于电力电子、军工、科研、工控设备、通讯设备、仪器仪表、交换设备、接入设备、移动通讯、路由器等通信领域和工业控制、汽车电子、航空航天等领域。
具有可靠性高、系统升级容易等特点,电源模块的应用越来越广泛。
此外,DC-DC转换器还广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。
在电路类型分类上属于斩波电路。
2.特点:其主要特点是效率高:与线性稳压器的LDO相比较,效率高是DCDC的显著优势。
通常效率在70%以上,重载下高的可达到95%以上。
其次是适应电压范围宽。
A: 调制方式1: PFM(脉冲频率调制方式)开关脉冲宽度一定,通过改变脉冲输出的频率,使输出电压达到稳定。
PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。
2: PWM(脉冲宽度调制方式)开关脉冲的频率一定,通过改变脉冲输出宽度,使输出电压达到稳定。
PWM控制型效率高并具有良好的输出电压纹波和噪声。
B: 通常情况下,采用PFM和PWM这两种不同调制方式的DC-DC转换器的性能不同点如下。
PWM的频率,PFM的占空比的选择方法。
PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。
02.架构分类1)常见的三种原理架构:A、 Buck(降压型DC/DC转换器)图1 B、Boost(升压型DC/DC转换器)图2 C、Buck-Boost(升降压型DC/DC转换器)图3 2)Buck电路工作原理详解图4伏秒平衡原则:处于稳定状态的电感,电感两端的正伏秒积等于负伏秒积,即:电感两端的伏秒积在一个开关周期内必须平衡。
DC-DC电感选型指南一:电感主要参数意义DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。
电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。
但是L越大,通常要求电感尺寸也会变大,DCR增加。
导致DC-DC效率降低。
相应的电感成本也会增加。
自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。
超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。
内阻DCR:指电感的直流阻抗。
该内阻造成I2R的能量损耗,一方面造成DC-DC降低效率,同时也是导致电感发热的主要原因。
饱和电流Isat:通常指电感量下降30%时对应的DC电流值。
有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。
二:DC-DC电感选型步骤1、根据DC-DC的输入输出特性计算所需的最小电感量。
对于Buck型DC-DC,计算公式如下Lmin=【Vout*(1-Vout/Vinmax)】/Fsw*Irpp其中:Vinmax = maximum input voltageVout = output voltagefsw = switching frequencyIrpp = inductor peak-to-peak ripple current通常将Irpp控制在50%的输出额定电流Irate。
则上述公式变化如下:Lmin=2*【Vout*(1-Vout/Vinmax)】/Fsw*Irate对于Boost型DC—DC的Lmin电感计算公式如下:Lmin=2*【Vinmax*(1-Vinmax/Vout)】/Fsw*Irate2、根据电感的精度,计算出有一定裕量的电感值例如:对于20%精度的电感,考虑到5%的设计裕量。
则Dc-DC所需的电感为L=1.25*Lmin3、确定我们所需的电感为比计算出的电感L稍大的标称电感例如:有一手机使用Buck型DC-DC,其输入为电池Vinmax= =4.2V,开关频率Fsw=1.2MHZ,输出电流Irate=500mA,输出电源Vout=1.2V则其DC-DC所需的电感Lmin= [2*1.2*(1-1.2/4.2)]/(1.2*0.5)uH=2.85uHL=2.86uH*1.25=3.57uH.距离3.57uH最近的一个标称电感为4.7uH,所以DC-DC外部电感选用4.7uH电感。
dcdc选电感参数电感值的选择电感值是决定 DC-DC 转换器性能的关键因素之一。
它影响着输出电压纹波、转换效率和瞬态响应。
影响电感值选择的因素开关频率 (fsw):开关频率越高,所需的电感值越小。
输出电流 (Io):输出电流越大,所需的电感值越大。
允许的输出电压纹波 (Vr):允许的输出电压纹波越小,所需的电感值越大。
电感器的最大电流额定值 (Ir):电感器的最大电流额定值必须大于输出电流。
计算电感值电感值可以通过以下公式计算:```L = (Vr Vout) / (2 fsw Io Ir) ```其中:L 为电感值Vr 为允许的输出电压纹波Vout 为输出电压fsw 为开关频率Io 为输出电流Ir 为电感器的最大电流额定值选择电感器的类型常见用于 DC-DC 转换器的电感器类型包括:铁氧体电感器:高磁导率,低损耗,成本低。
铁粉电感器:磁导率较低,但具有更高的饱和电流容量。
绕线电感器:具有高品质因数和低分布电容,但成本较高。
其他考虑因素除了电感值外,选择电感时还应考虑以下因素:尺寸和封装:电感器的尺寸和封装应与电路板布局兼容。
温度稳定性:电感器的电感值应在工作温度范围内保持稳定。
屏蔽:屏蔽电感器可以减少电磁干扰 (EMI)。
成本:电感器的成本应在预算范围内。
步骤总结选择 DC-DC 转换器电感的步骤总结如下:1. 确定允许的输出电压纹波、输出电流和开关频率。
2. 使用公式计算所需的电感值。
3. 选择满足所需电感值和电流额定值的电感器类型。
4. 考虑尺寸、温度稳定性、屏蔽和成本等其他因素。
5. 根据这些因素选择最合适的电感器。
DC-DC转换器电感参数详解2-设计应用在上一篇文章中,我们对DC-DC转换器的要求以及电感参数中的电感值、公差和电阻进行了介绍。
本文中,我们将对电感的其它参数进行详细讲解。
自谐频率(SRF)每个电感线圈都有一些联带的分布电容,与电感值一起形成一个有自谐频率的并联谐振回路。
对于大多数转换器来说,电感ZH是在远低于SRF的频率下工作。
这个通常在电感数据中显示为“典型”值。
电流额定值在确定一个功率电感时,电流额定值或许是Z难确定的额定值。
在整个开关循环过程中,通过DC-DC转换器电感的电流总是在变化,并且可能是循环到循环的变化,这取决于转换器的运作,包括由于突加负载或线路变化而产生的瞬变电流或尖峰电流。
这就产生一个不断变化的电流值,有时具有非常高的峰均比。
正是峰均比使额定值的确定变得困难。
如果用Z大瞬时峰值电流作为“电流额定值”来选择电感是不必要的;但如果用平均电流作为电流额定值来选择电感,当通过峰值电流时,电感可能无法正常工作。
解决此问题的方法是寻找有两种电流额定值的电感,一个用来应付因峰值电流导致的铁芯饱和,一个用来解决平均电流的发热问题。
饱和电流电流通过电感的一个影响是铁芯饱和。
DC-DC转换器的电流波形一般都有一个直流成分。
此直流电流通过电感时偏置铁芯从而导致其磁通量饱和。
设计人员需要知道,当发生饱和时,电感值下降,元件功能也不再表现为电感。
图1是一个带气隙的铁氧体磁芯的电感值与电流的曲线图。
可以看到,当电感进入饱和区域时,这条曲线有一个“拐点”。
因此,对饱和电流的定义就显得有些随意,但必须对其进行定义。
在图2的例子中,饱和电流被定义为电感值下降10%时的电流。
在10-20%的范围内进行定义是很普遍的,但应注意的是,有些电感目录可能会定义为电感值下降50%时的电流。
这会增大电流额定值,但就电流的可用范围而言,这可能会引起误导。
“图1:线艺DO3316P-103的电感与直流偏流”图1:线艺DO3316P-103的电感与直流偏流“图2:铁芯饱和及不饱和时的电感电流波形”图2:铁芯饱和及不饱和时的电感电流波形通常能够直接从转换器电流波形中看出电感铁芯饱和,di/dt与电感值是成反比的。
DCDC如何选择电感与电容(超实用、经典)使用DC/DC转换器主要是为了提高效率。
很多设计都要求将电池电压转换成较低的供电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高效率。
本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常见问题。
大信号与小信号响应开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。
现在的CPU内核电源要求稳压器提供快速而通畅的大信号响应。
例如,当处理器从空闲模式切换至全速工作模式时,内核吸收的电流会从几十微安很快地上升到数百毫安。
随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。
负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。
我们可根据稳态工作点定义小信号参数。
因此,我们一般将低于稳态工作点10%的变化称为小信号变化。
实际上,误差放大器处于压摆范围(slew limit)内,由于负载瞬态发生速度超过误差放大器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满足瞬态电流要求。
大信号响应会暂时使环路停止工作。
不过,在进入和退出大信号响应之前,环路必须提供良好的响应。
环路带宽越高,负载瞬态响应速度就越快。
从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在线路或负载瞬态期间仍然可能出现不稳定状态和振铃现象。
在选择外部元件时,电源设计工程师应意识到这些局限性,否则其设计就有可能遇到麻烦。
电感器选型以图1所示的基本降压稳压器为例,说明电感器的选型。
以TPS6220x为例,对大多数应用而言,电感器的电感值范围为4.7uH~10uH。
电感值的选择取决于期望的纹波电流。
一般建议纹波电流应低于平均电感电流的20%。
如等式1所示,较高的VIN或VOUT也会增加纹波电流。
电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。
以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转换器的负载瞬态响应。
电源设计之电感选型一:电感主要参数意义DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。
电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。
但是L越大,通常要求电感尺寸也会变大,DCR增加。
导致DC-DC效率降低。
相应的电感成本也会增加。
自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。
超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。
内阻DCR:指电感的直流阻抗。
该内阻造成I2R的能量损耗,一方面造成DC-DC降低效率,同时也是导致电感发热的主要原因。
饱和电流Isat:通常指电感量下降30%时对应的DC电流值。
有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。
二:DC-DC电感选型步骤根据DC-DC的输入输出特性计算所需的最小电感量。
(对于电感量的计算,各DC-DC芯片手册上有明确的计算方法,请以手册为准,以下公式只是个举例说明)对于Buck型DC-DC,计算公式如下Lmin=【Vout*(1-Vout/Vinmax)】/Fsw*Irpp其中:Vinmax=maximum input voltage Vout=output voltagefsw=switching frequency Irpp=inductor peak-to-peak ripple current通常将Irpp控制在50%的输出额定电流Irate。
则上述公式变化如下:Lmin=2*【Vout*(1-Vout/Vinmax)】/Fsw*Irate对于Boost型DC—DC的Lmin电感计算公式如下:Lmin=2*【Vinmax*(1-Vinmax/Vout)】/Fsw*Irate之前还是工程师的时候,在做高密度贴装电源方案时,L1,L3电感选型为普通工字10uH贴片电感,EMC测试余量不足,后面不停调整电路,效果均不理想;后来深圳电感厂商Tcccoil的工程师建议改用屏蔽电感(一体电感),解决了EMC问题.一体成型电感从性能到价格方面是真的能替代传统电感呢,师兄弟们都觉得,一体成型电感工艺比一般的电感要复杂,生产成本较高,价格贵。
DC_DC电感选型指南
一:电感主要参数意义
DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。
电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。
但是L 越大,通常要求电感尺寸也会变大,DCR增加。
导致DC-DC效率降低。
相应的电感成本也会增加。
自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。
超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。
内阻DCR:指电感的直流阻抗。
该内阻造成I2R的能量损耗,一方面造成DC-DC 降低效率,同时也是导致电感发热的主要原因。
饱和电流Isat:通常指电感量下降30%时对应的DC电流值。
有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。
二:DC-DC电感选型步骤
1,根据DC-DC的输入输出特性计算所需的最小电感量。
对于Buck型DC-DC,计算公式如下
Lmin=【V out*(1-V out/Vinmax)】/Fsw*Irpp
其中:Vinmax = maximum input voltage Vout = output voltage
fsw = switching frequency Irpp = inductor peak-to-peak ripple current
通常将Irpp控制在50%的输出额定电流Irate。
则上述公式变化如下:
Lmin=2*【V out*(1-V out/Vinmax)】/Fsw*Irate
对于Boost型DC—DC的Lmin电感计算公式如下:
Lmin=2*【Vinmax*(1-Vinmax/V out)】/Fsw*Irate
2,根据电感的精度,计算出有一定裕量的电感值例如:对于20%精度的电感,考虑到5%的设计裕量。
则Dc-DC所需的电感为
L=1.25*Lmin
3,确定我们所需的电感为比计算出的电感L稍大的标称电感例如:有一手机使用Buck型DC-DC,其输入为电池Vinmax= =4.2V,开关频率Fsw=1.2MHZ,输出电流Irate=500mA,输出电源Vout=1.2V
则其DC-DC所需的电感Lmin= [2*1.2*(1-1.2/4.2)]/(1.2*0.5)uH=2.85uH L=2.86uH*1.25=3.57uH.
距离3.57uH最近的一个标称电感为4.7uH,所以DC-DC外部电感选用
4.7uH电感。
4,在给定的的标称电感下,考虑以下限制因素最终决定电感的选型。
1),电感自谐频率f0需10倍于开关频率Fsw以上。
2),饱和电流Isat和有效电流Irms中较低的一个需是DC-DC额
定电流输出Irate的1.3倍以上。
3),DCR越低越好
4),叠层电感比绕线电感好(损耗小)
5),带屏蔽的电感比不带屏蔽的电感好。
(改善EMI)
另外,电感的成本和体积也是需要权衡的。