DC-DC电感选型指南
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
DC/DC模块电源以其体积小巧、性能卓异、使用方便的显着特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。
怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,谈一谈这方面的问题,以供广大系统设计人员参考。
DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器。
具体是指通过自激振荡电路把输入的直流电转变为交流电,再通过变压器改变电压之后再转换为直流电输出,或者通过倍压整流电路将交流电转换为高压直流电输出。
1 电源模块选择需要考虑的几个方面额定功率封装形式温度范围与降额使用隔离电压功耗和效率2 额定功率一般建议实际使用功率是模块电源额定功率的30~80%为宜(具体比例大小还与其他因素有关,后面将会提到。
),这个功率范围内模块电源各方面性能发挥都比较充分而且稳定可靠。
所有模块电源均有一定的过载能力,但是仍不建议长时间工作在过载条件下,毕竟这是一种短时应急之计。
3 封装形式DC/DC变换器的外形尺寸和输出形式差异很大。
小功率产品采用密封外壳,外形十分纤小;大功率产品常采用quarter-brick 或half-brick的形式,电路或暴露,或以外壳包裹。
在选择时,需要注意以下两个方面:第一,引脚是否在同一平面上;第二,是否便于焊接。
SMT 形式的变换器必须要符合IEC191-6:1990标准的要求,该标准对SMT器件引脚的共面问题做出了严格限定。
如果变换器不能满足这个要求,就需要为其设计专门的焊接装配工艺,这会增加装配时间,提高生产成本。
模块电源的封装形式多种多样,符合国际标准的也有,非标准的也有,就同一公司产品而言,相同功率产品有不同封装,相同封装有不同功率,那么怎么选择封装形式呢?主要有三个方面:① 一定功率条件下体积要尽量小,这样才能给系统其他部分更多空间更多功能;② 尽量选择符合国际标准封装的产品,因为兼容性较好,不局限于一两个供货厂家;③ 应具有可扩展性,便于系统扩容和升级。
dcdc 电路共模电感dcdc电路中的共模电感是一种非常重要的元件,它在电路中起着关键的作用。
本文将从共模电感的定义、原理、应用以及选型等方面进行详细阐述。
我们来了解一下共模电感的定义。
共模电感是指在直流-直流转换器(DC-DC转换器)中用于滤除共模噪声的电感。
共模噪声是指同时作用于电路两个输入端的噪声信号,它们具有相同的幅度和相位。
共模电感的主要作用是阻止共模噪声进入电路,从而保证电路的正常工作。
接下来,我们来了解一下共模电感的工作原理。
共模电感的工作原理基于电感的特性。
当共模噪声进入电路时,共模电感会产生反向的电流,从而抵消共模噪声。
共模电感的大小取决于电路的设计和要求,一般来说,共模电感的阻抗应与电路输入端的负载匹配。
共模电感在电路中有着广泛的应用。
首先,它常用于直流-直流转换器中,用于滤除共模噪声。
在高频电路中,共模电感也常被用于滤波器和功率放大器中,起到抑制共模噪声的作用。
此外,共模电感还常被用于干扰抑制、电源线滤波、通信设备、医疗设备等领域。
在选用共模电感时,需要考虑一些关键因素。
首先是电感值的选择,通常选择的电感值应能满足电路的要求。
其次是电感的尺寸和结构,要根据电路的空间和布局要求来选择合适的尺寸和结构。
此外,还需要考虑电感的性能参数,如电感的电流、频率响应等。
最后,还需要考虑电感的可靠性和成本等因素。
总结起来,共模电感在dcdc电路中是一种非常重要的元件。
它能够有效滤除共模噪声,保证电路的正常工作。
共模电感的工作原理是利用电感的特性,通过产生反向电流来抵消共模噪声。
在选用共模电感时,需要考虑电感值、尺寸、性能参数以及可靠性和成本等因素。
通过合理选择和应用共模电感,可以提高电路的性能和稳定性,减少噪声对电路的干扰。
DC-DC 电源芯片的选取和使用要点汉邦高科:晏超为了解决芯片的散热问题,就不断提高生产工艺,降低热阻,同时也不断通过技术层面提高芯片效率从而减少发热量。
这句话让我们可以知道首先产生发热的根源在于效率不高,其次解决的办法有提高效率和降低器件热阻两种方案。
DC-DC 电源芯片的选取和使用要点。
一、电源芯片型号选取要考虑的要点。
1)输入输出电压;2)负载电流大小;3)输出的通道数量;4)成本;5)封装形式;6)效率;二、实际应用中元件选取的计算。
1)分压电阻R1、R2的选取。
FBFB out FB out V V V R R R R R V V -=⇒+=*21221*其中V Out 为输出电压,V FB 为芯片自身预设的参考电压,一般为0.8V 。
预设R2之后确定R1。
为了提高系统环路的稳定性一般加大R1和R FB 的值。
2)外置电感的选取a 、感量计算如下:)1(.inout L s out V V I f V L -∆= f s 为芯片工作的开关频率,具体查看Datasheet 。
L I ∆为输出电感上的纹波电流,一般情况L I ∆= (30%~50%)I OUT ;b 、电感电流的选取依据:)1(..2inout s out PEAK V V L f V Iout I -+= 其中I PEAK 为电感的峰值电流,I out 为所需的负载电流。
电感的感量并不是必须完全按照理论计算的来的,只要有个大概就好,对输出的影响主要在纹波,只要满足系统电源要求就可以。
对于公司来说电感尽量选取一致。
三、轻载高效的方法。
1)降低芯片的待机功耗,;2)进行零点检测,关闭IC 内部不需要的模块;3)降低开关频率,进入打嗝模式;4)进入休眠模式;四、实际应用中PCB Layout 中要注意事项。
1)输入电容尽量靠近Vin引脚;2)芯片Vcc 的滤波电容尽量靠近引脚;3)加粗地线宽度或者接地铜皮面积。
如果不同层,要多打过孔;4)反馈电阻尽量靠近FB引脚,从R FB到FB引脚的连线尽量短,因为这段线极易受到干扰,对输出特性影响较大。
DCDC转换器如何选择电感与电容DC-DC转换器是一种将直流电压转换为不同电压级别的器件。
在选择电感和电容时,需要考虑转换器的工作频率、功率要求、效率、体积、成本等因素。
接下来将从这些方面详细介绍如何选择电感和电容。
1.工作频率:工作频率是选择电感和电容的关键因素之一、转换器的工作频率通常为几十千赫兹到几兆赫兹,不同频率的转换器对电感和电容的要求也不同。
一般来说,工作频率较高的转换器需要使用低电感值和小电容值的元件,而工作频率较低的转换器则需要使用高电感值和大电容值的元件。
2.功率要求:转换器的功率要求是选择电感和电容的另一个关键因素。
功率要求高的转换器通常需要使用高电流承受能力的电感和电容,以保证转换器的稳定性和可靠性。
此外,功率要求高的转换器还需要考虑元件的能量损耗、温升等因素,以确保转换器的高效率运行。
3.效率:效率是转换器的重要指标之一,也是选择电感和电容的重要考虑因素。
较高的效率意味着转换器的能量损耗较小,因此在选择电感和电容时应考虑其损耗等效系列电阻和损耗等效并联电阻等参数。
通常选择较低电感值和小电容值的元件可以提高转换器的效率。
4.体积:转换器的体积是另一个需要考虑的因素。
较小体积的转换器往往需要较小的电感和电容。
因此,在选择电感和电容时应考虑其尺寸和重量,以满足转换器体积小、重量轻的要求。
5.成本:成本是选择电感和电容的重要考虑因素之一、较大电感值和较大电容值的元件通常成本较高,而较小电感值和较小电容值的元件成本相对较低。
在选择电感和电容时,应根据转换器的成本预算,选择性价比高的元件。
综上所述,选择适合的电感和电容需要综合考虑工作频率、功率要求、效率、体积和成本等因素。
需要注意的是,不同转换器的特性和要求有所差异,因此在选择电感和电容时应根据具体的应用场景进行综合考虑,并多进行实验验证。
DCDC电路应该是硬件设计中最常见的电路,而Buck用得尤其多,下文介绍下电路中电感选型的几个思考。
BUCK电路选型的最重要的两个参数:电感值,电感电流。
电感电流一般有2个值:Isat是指饱和电流,一般指饱和电流(Saturation Current)电感值下降到30%(不同厂家定义有所不同,一般为10%-30%)的电流。
---dcdc电路中感电流瞬间值不能超过这个。
Irms是温升电流,也就是加电流后,电感产品自我温升温度不超过40度时的电流。
---dcc电路中电感电流有效值不能超过这个.电感值计算公式:Lmin=(Vin-Vout)*Vout/(△I*f*Vin) ---同步BUCK,异步需要加入二极管的电压步骤:(1)确认输出电流Iout(2)确认电感值Lmin=(Vin-Vout)*Vout/(△I*f*Vin)一般来说△I(上图的Ipp)取20%-30%的Iout(最大输出电流),f为DCDC开关频率(3)根据Lmin选取L,一般略取大一点(4)通过上面的公式计算△I,ImaxImax=Iout+1/2 △I,饱和电流要大于Imax(5)确认电感的饱和电流要大于Imax温升电流要大于Iout确认输出电流以上公式网上颇多,如果只写到这里,那么本文也没什么价值。
主要是有一个问题,上述的Iout到底取多少呢?是DCDC芯片的最大输出电流能力,还是实际工作过程中真正使用的最大电流呢?笔者认为应是DCDC芯片的最大输出电流能力,比如2A的DCDC芯片,那么这里Iout取2A。
理由如下:假设实际要用到2A电流,与芯片能力是一样的,那么不管取芯片电流能力还是实际使用电流,按照公式算得电感值是相同的,用这个电感可以设计出输出2A的DCDC电路。
这时如果用这个电路接入500mA的负载,即实际输出电流是500mA,难道就不能用了,显然是可以的。
由公式知道,L与输出电流成反比,如果按照实际电流计算,在接小负载时,比如200mA,那么算得的L值是2A时的10倍,电感值大,体积就大,这是我们不希望的。
DCDC功率电感(Inductor)选型
1、功率电感分类
2、电感主要参数
3 、DCDC感量计算
电感过小——输出纹波大
电感过大——动态响应不好,
电感太大,太小可能会改变DCDC的工作模式
电感饱和后,电流会急剧增加,使电感温度升高,同时会影响其它元件的寿命
步骤:
(1)确认输出电流
(2)确认电感值
Lmin=(Vin-Vout)*Vout/(△I*f*Vin)
一般来说△I取20%-30%的Iout ,f为DCDC开关频率
(3)根据Lmin选取L,一般略取大一点
(4)通过上面的公式计算△I,Imax
Imax=Iout+1/2 △I
(5)确认电感的饱和电流要大于Imax
温升电流要大于Iout
(6)实测
因为电感的交流参数都是在100K正弦波下所测的,实际应用中会有区别,所以最后需要通过实测来确认电感是否适合。
实例:
例子:SY8120 12V转 2A输出开关频率 500K
Lmin=()*(2**500K*12)=
综合考虑后,选取
△I=(23%)
Imax=2+2=
SWPA6045S 4R7MT/顺络
饱和电流
温升电流
经验:建议最大电流+△I要求小于电感饱和电流的80% 所以可选取使用
(7)下表1为△I的理论计算值
4 、感值标注、常见封装
5、某电感型号表。
DCDC电感选型指南DC/DC电感是直流-直流转换电路中的重要元件,主要用于存储和传递能量。
选用合适的电感对于电路的性能和效率至关重要。
本文将为您介绍DC/DC电感的选型指南,帮助您在设计中选择正确的电感。
1.了解电路工作条件在选择电感之前,首先需要了解电路的工作条件。
这包括输入电压范围、输出电压范围、输出电流范围以及开关频率等。
根据这些参数可以确定电感所需的工作模式(连续模式或间断模式)和承载能力。
2.确定电感的额定电流电感的额定电流是电感能够承受的最大电流。
在计算额定电流时,需要考虑开关频率、电感的内阻和温度等因素。
一般来说,额定电流应大于或等于电路中的最大输出电流,以确保电感工作在安全范围内。
3.选择合适的工作模式根据电路的工作参数,确定电感的工作模式。
连续模式适用于较低的开关频率和较小的电流波动,而间断模式适用于较高的开关频率和较大的电流波动。
选择合适的工作模式可以提高电路的效率和稳定性。
4.计算电感值根据电路的输入电压范围、输出电压范围和开关频率,可以计算出所需的电感值。
一般来说,电感值越大,电感能存储的能量就越多。
但是,较大的电感值也会带来较大的尺寸和成本。
所以需要在尺寸、成本和性能之间进行权衡。
5.选择合适的磁芯材料DC/DC电感通常采用磁芯来增加电感的存储能量。
选择合适的磁芯材料可以提高电感的效率和性能。
常见的磁芯材料包括铁氧体、烧结铁氧体、金属材料等。
不同的磁芯材料具有不同的磁导率、饱和磁感应强度、磁阻等特性。
根据电路要求选择适合的磁芯材料。
6.考虑温升和寿命在选择电感时,需要考虑电感的温升和寿命。
温升是指电感在工作过程中的温度升高,而寿命是指电感的使用寿命。
高温会影响电感的性能和寿命。
因此,在选择电感时,需要考虑电感的温升和寿命要求,选择合适的电感。
7.参考厂商规格书最后,在选型过程中,可以参考厂商的规格书和应用手册。
规格书通常提供了电感的详细性能参数、选型指南和使用注意事项等信息。
DC-DC电路中电感的选择深⼊剖析电感电流DC/DC电路中电感的选择原⽂:Fairchild Semic on ductor AB-12 : In sight into In ductor Curre nt翻译:frm(注:只有充分理解电感在DC/DC电路中发挥的作⽤,才能更优的设计DC/DC 电路。
本⽂还包括对同步DC/DC及异步DC/DC既念的解释。
)简介在开关电源的设计中电感的设计为⼯程师带来的许多的挑战。
⼯程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺⼨等等。
本⽂专注于解释:电感上的DC电流效应。
这也会为选择合适的电感提供必要的信息。
理解电感的功能电感常常被理解为开关电源输出端中的LC滤波电路中的L (C是其中的输出电容)。
虽然这样理解是正确的,但是为了理解电感的设计就必须更深⼊的了解电感的⾏为。
在降压转换中(Fairchild 典型的开关控制器),电感的⼀端是连接到DC输出电压。
另⼀端通过开关频率切换连接到输⼊电压或GNDV JMA S悟怕1 DC Output Voltage* State 2Figure 1. Basic Switching Action of a Converter在状态1过程中,电感会通过(⾼边“high-side ”)MOSFE连接到输⼊电压。
在状态2过程中,电感连接到GND由于使⽤了这类的控制器,可以采⽤两种⽅式实现电感接地:通过⼆极管接地或通过(低边“ low-side ”)MOSFE接地。
如果是后⼀种⽅式,转换器就称为“同步(synchronus )”⽅式。
现在再考虑⼀下在这两个状态下流过电感的电流是如果变化的。
在状态1过程中,电感的⼀端连接到输⼊电压,另⼀端连接到输出电压。
对于⼀个降压转换器,输⼊电压必须⽐输出电压⾼,因此会在电感上形成正向压降。
相反,在状态2过程中,原来连接到输⼊电压的电感⼀端被连接到地。
对于⼀个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。
DC_DC电感选型指南
一:电感主要参数意义
DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。
电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。
但是L 越大,通常要求电感尺寸也会变大,DCR增加。
导致DC-DC效率降低。
相应的电感成本也会增加。
自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。
超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。
内阻DCR:指电感的直流阻抗。
该内阻造成I2R的能量损耗,一方面造成DC-DC 降低效率,同时也是导致电感发热的主要原因。
饱和电流Isat:通常指电感量下降30%时对应的DC电流值。
有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。
二:DC-DC电感选型步骤
1,根据DC-DC的输入输出特性计算所需的最小电感量。
对于Buck型DC-DC,计算公式如下
Lmin=【V out*(1-V out/Vinmax)】/Fsw*Irpp
其中:Vinmax = maximum input voltage Vout = output voltage
fsw = switching frequency Irpp = inductor peak-to-peak ripple current
通常将Irpp控制在50%的输出额定电流Irate。
则上述公式变化如下:
Lmin=2*【V out*(1-V out/Vinmax)】/Fsw*Irate
对于Boost型DC—DC的Lmin电感计算公式如下:
Lmin=2*【Vinmax*(1-Vinmax/V out)】/Fsw*Irate
2,根据电感的精度,计算出有一定裕量的电感值例如:对于20%精度的电感,考虑到5%的设计裕量。
则Dc-DC所需的电感为
L=1.25*Lmin
3,确定我们所需的电感为比计算出的电感L稍大的标称电感例如:有一手机使用Buck型DC-DC,其输入为电池Vinmax= =4.2V,开关频率Fsw=1.2MHZ,输出电流Irate=500mA,输出电源Vout=1.2V
则其DC-DC所需的电感Lmin= [2*1.2*(1-1.2/4.2)]/(1.2*0.5)uH=2.85uH L=2.86uH*1.25=3.57uH.
距离3.57uH最近的一个标称电感为4.7uH,所以DC-DC外部电感选用
4.7uH电感。
4,在给定的的标称电感下,考虑以下限制因素最终决定电感的选型。
1),电感自谐频率f0需10倍于开关频率Fsw以上。
2),饱和电流Isat和有效电流Irms中较低的一个需是DC-DC额
定电流输出Irate的1.3倍以上。
3),DCR越低越好
4),叠层电感比绕线电感好(损耗小)
5),带屏蔽的电感比不带屏蔽的电感好。
(改善EMI)
另外,电感的成本和体积也是需要权衡的。