最全一般信号线用电感选型资料推荐
- 格式:pdf
- 大小:2.00 MB
- 文档页数:3
电感的参数与选型时间:2010-08-28 01:32 来源:互联网作者:点击:匡]次一、电感参数我们首先看一下电感元件的主要参数。
见表1表1电感元件的主要参数主要参数定义说明电感量L电感量L也称作自感系数,是表示电感兀件自感能力的一种物理量它表示线圈本身固有特性,与电流大小无关。
除专门的电感线圈(色码电感)外,电感量一般不专门标志在线圈上,而以特疋的名称标注允许偏差电感线圈电感量的允许偏差它取决于用途,用于谐振回路或滤波器中的线圈要求精度较高;而一般用于耦合或作为阻流圈的线圈,要求精度不咼。
例如,振荡回路的电感线圈,允许偏差为土0.2%~± 0.5%;而高频阻流圈和耦合线圈,允许偏差为土10%± 15%感抗X L电感线圈对交流电流阻碍作用的大小称感抗X L 单位是欧[姆]。
它与电感量L和交流电频率f的关系为X t=2n fL品质因素Q品质因素Q是表示线圈质量的一个物理量Q为感抗X L与其等效电阻的比值,即Q=X/R。
线圈的Q值越高,回路的损耗越小。
线圈的Q值与导线的直流电阻、骨架的介质损耗、屏蔽罩或铁芯引起的损耗、高频趋肤效应的影响等因素有关。
线圈的值通常为几十到几百分布电容线圈的匝与匝间、线圈与屏蔽罩间、线圈与底板间存在的电容被称为分布电容分布电容的存在使线圈的Q值减小,稳定性变差因而线圈的分布电容越小越好直流电阻电感线圈自身的直流电阻可用万用电桥、数子万用表和欧姆表直接测得额定电流通常疋扌曰允许长时间通过电感元件的直流电流值在选用电感元件时,若电路流过电流大于额定电流值,就需要改用额定电流符合要求的其他型号电感器国半专家谈如何为便携式系统选择电感元件设计人员在考虑无源器件时,他们想到的是电感电容的生产容限,一般为土20%或土10%这在理论上是对的,但在实际应用中却不然。
本文介绍电容电感易受影响的一些参数以及系统设计人员必须了解的知识,并讨论如何为最小但最高效的便携式电源系统解决方案选择外部元件、选择电感为便携式电源应用选择电感,需要考虑的最重要的三点是:尺寸大小、尺寸大小,第三还是尺寸大小。
1.电感的认识按结构可分积层结构和线圈结构,平常比较常见的有铁氧体磁珠(FERRITE BEAD),多层积层电感,绕线式电感,COMMON CHOKE,POWER DIVIDER,Transformer2.电感器的规范叙述例子:1 FERRITE BEAD ①②③④Ex. FERRITE BEAD 0201 240OHM100mA BLM03AG241SMD①COMPONENT SIZE②IMPEDANCE③RATED CURRENT 額定電流④VENDOR PART NUMBER2 INDUCTOR/CHOKE ①②③④⑤Ex. INDUCTOR 1uH15A 15% Mohm DIP Ex. CHOKE①INDUCTANCE②RATED CURRENT③INDUCTANCE TOLANCE④DC RESISTANCE 直流阻抗值⑤PACKAGE TYPE3 INDUCTOR CHIP ①②③④⑤Ex. INDUCTOR CHIP 1.8uH 270mA 10% 1.2OHM 2016①INDUCTANCE②RATED CURRENT③INDUCTANCE TOLANCE④DC RESISTANCE⑤PACKAGE TYPE4 CHOKE ①②③④⑤Ex. CHOKE 0.4uH 40A 10% 0.65mOHM RT①INDUCTANCE②RATED CURRENT③INDUCTANCE TOLANCE④DC RESISTANCE⑤PACKAGE TYPE ST/RT3.按参数选型-电感量L 电感元件自感应能力的一种物理量-允许偏差电感量的允许偏差-感抗电感对交流电流阻碍作用的大小-品质因数线圈质量的一个物理量,这个要看产品设计要求,线圈的Q值越高,回路损耗越小-分布电容线圈的匝与匝,线圈与屏蔽罩间,线圈与底版间存在的电容称为分布电容,分布电容的存在使线圈的Q值减小,稳定性变差-直流阻抗电感的直流阻抗-额定电流允许长时间通过的电感元件的直流电感值在这里介绍一下电感和磁珠的区别电感是储能元件,而磁珠是能量转换(消耗)器件。
技术⼤⽜教你电感如何选型器件选型是硬件⼯程师的基本⼯作,本⽂主要从电感的⼯艺和应⽤出发,介绍电感如何选型。
⼀、电感的基本原理电感,和电容、电阻⼀起,是电⼦学三⼤基本⽆源器件;电感的功能就是以磁场能的形式储存电能量。
以圆柱型线圈为例,简单介绍下电感的基本原理如上图所⽰,当恒定电流流过线圈时,根据右⼿螺旋定则,会形成⼀个图⽰⽅向的静磁场。
⽽电感中流过交变电流,产⽣的磁场就是交变磁场,变化的磁场产⽣电场,线圈上就有感应电动势,产⽣感应电流:电流变⼤时,磁场变强,磁场变化的⽅向与原磁场⽅向相同,根据左⼿螺旋定则,产⽣的感应电流与原电流⽅向相反,电感电流减⼩;电流变⼩时,磁场变弱,磁场变化的⽅向与原磁场⽅向相反,根据左⼿螺旋定则,产⽣的感应电流与原电流⽅向相同,电感电流变⼤。
以上就是楞次定律,最终效果就是电感会阻碍流过的电流产⽣变化,就是电感对交变电流呈⾼阻抗。
同样的电感,电流变化率越⾼,产⽣的感应电流越⼤,那么电感呈现的阻抗就越⾼;如果同样的电流变化率,不同的电感,如果产⽣的感应电流越⼤,那么电感呈现的阻抗就越⾼。
所以,电感的阻抗于两个因素有关:⼀是频率;⼆是电感的固有属性,也就电感的值,也称为电感。
根据理论推导,圆柱形线圈的电感公式如下:可以看出电感的⼤⼩与线圈的⼤⼩及内芯的材料有关。
实际电感的特性不仅仅有电感的作⽤,还有其他因素,如:· 绕制线圈的导线不是理想导体,存在⼀定的电阻;· 电感的磁芯存在⼀定的热损耗;· 电感内部的导体之间存在着分布电容。
因此,需要⽤⼀个较为复杂的模型来表⽰实际电感,常⽤的等效模型如下:等效模型形式可能不同,但要能体现损耗和分布电容。
根据等效模型,可以定义实际电感的两个重要参数。
⾃谐振频率(Self-Resonance Frequency)由于Cp的存在,与L⼀起构成了⼀个谐振电路,其谐振频率便是电感的⾃谐振频率。
在⾃谐振频率前,电感的阻抗随着频率增加⽽变⼤;在⾃谐振频率后,电感的阻抗随着频率增加⽽变⼩,就呈现容性。
目录封二 目录…………………………………………………………………公司介绍及企业文化 ………………………………………………………………………………………1 …………………………………………………2-8电网主动(有源)滤波设备用大功率电感器 电力电子用大功率滤波电感器 有源功率因数校正电感器 BUCK 储能滤波电感器 软开关谐振电感器 差模/共模电感器……………………………………………………………… 9-16…………………………………………………………………… 17-20 ……………………………………………………………………… 21-23……………………………………………………………………… 24-26 ………………………………………………………………………27-311电网谐波问题及有关标准的提出随着现代工业的高速发展,电力系统的非线性负荷日益增多。
如各种换流设备、变频装置、电弧炉、电气化 铁道等非线性负荷遍及全系统,而程控交换机、电视机、高频逆变焊机、电子镇流器等信息设备、办公自动化设 备和家用电器的使用越来越广泛。
这些非线性负荷产生的谐波电流注入到电网, 使公用电网的电压波形产生畸变, 严重地污染了电网的环境,威胁着电网中各种电气设备的安全运行。
其危害概括起来有以下几个方面: ①可能使电力系统的继电保护和自动装置产生误动或拒动,直接危及电网的安全运行。
②使交流供电设备(如交流发电机、UPS 等)输出功率的利用率降低,并使输电线上的损耗增大,造成了紧缺资源 的严重浪费。
③使三相四线制电网中的三次及其倍数次谐波在中线同相位,导致合成后中线电流很大,甚至可能超过相电流。
但由于安全标准规定中线无保护装置,因此可能过热起火发生安全事故。
④使各种电气设备产生附加损耗和发热、使电机产生机械振动和噪声。
⑤电网中谐波通过电磁感应、电容耦合、以及电气传导等方式,对周围的通讯系统产生干扰、降低信号的传输质 量,破坏信号的正常传递,甚至损坏通讯设备。
如何选择适合的电感电感是一种常见的电子元件,广泛应用于各种电路中。
选择适合的电感对于电路的正常运行至关重要。
本文将介绍如何选择适合的电感,并给出一些建议。
一、了解电感的基本概念和特性电感是指电流变化时所产生的自感电动势,通常由线圈或线圈组成。
电感的单位是亨利(H),常用的子单位有微亨(μH)和纳亨(nH)。
电感的特性包括电感值、品质因数、最大电流等。
二、确定电感的使用环境和要求在选择适合的电感之前,需要了解电路的使用环境和对电感的要求。
比如工作频率范围、电流大小、容忍功率损耗等。
只有明确这些要求,才能更好地选择适合的电感。
三、选择合适的电感类型1. 通用型电感:通用型电感适用于大部分一般性电路,具有较好的频率响应和磁饱和特性。
在选择时,需要根据要求确定合适的电感值和容忍功率损耗。
2. 高频电感:高频电感适用于工作频率较高的电路,具有较低的内阻和较小的耦合电容。
在选择时,需要考虑电感的高频响应和磁芯材料的磁导率。
3. 低频电感:低频电感适用于工作频率较低的电路,通常具有较高的电感值和较高的耦合电容。
在选择时,需要考虑电感的低频特性和磁芯材料的饱和电流。
四、选择适当的电感参数1. 电感值:根据电路的需求确定合适的电感值,可以通过仿真软件或实验验证得到。
一般来说,电感值越大,电感所储存的能量越多,但也会增加电感本身的大小和成本。
2. 容忍功率损耗:不同的电感具有不同的功率损耗特性。
在选择时,需要根据电路的功率需求和效率要求来确定合适的容忍功率损耗。
3. 最大电流:电感的最大电流是指电感能够承受的最大电流值。
在选择时,需要根据电路的工作电流来确定合适的最大电流。
五、考虑其它因素除了上述参数外,还有一些其他因素需要考虑:1. 尺寸和重量:根据电路的空间限制和重量要求,选择适合的电感尺寸和重量。
2. 成本:根据预算确定合适的电感。
3. 可靠性:选择可靠性较高的品牌和供应商。
六、参考实例以下是一些常见应用场景下的电感选择建议:1. 高频应用:对于高频应用,建议选择高频电感,具有较低的内阻和较小的耦合电容。
电感讲解及选取技巧电感是电路中常用的电子元件之一,它主要用于储存和传递电能。
通过电感产生的磁通量产生的感应电动势,可以使电感具有储存能量的特性。
在实际应用中,电感有多种类型和参数,选取适合的电感对电路性能至关重要。
下面将介绍电感的基本原理、常见类型以及选取技巧。
一、电感的基本原理电感是利用线圈(或绕组)中的电流通过线圈产生的磁通量产生的感应电动势来储存和传递电能。
根据法拉第电磁感应定律,当通过线圈的电流发生变化时,会在线圈中产生感应电动势,这个感应电动势会阻碍电流的变化。
简而言之,电感通过存储磁场能量来储存和传递电能。
二、电感的类型1.铁芯电感:线圈绕在铁芯上,用来增加磁通量和电感值。
铁芯电感具有较高的能量储存和较小的尺寸,适用于高能量要求的应用。
2.空心电感:无铁芯,由线圈直接绕在空心线圈上。
空心电感具有较小的电感值,适合低能量应用。
3.自支撑电感:无铁芯,线圈绕在一起并连接,形成自支撑结构。
自支撑电感具有较高的电感值和自阻抗,适合高频应用。
三、电感的选取技巧1.电感值的选取:根据电路要求和电感器的特性来选择合适的电感值。
一般来说,大电感值可用于低频电路和能量储存,小电感值可用于高频电路和信号传输。
在选择电感值时,还要考虑电感器的容忍电流和最大磁通量等参数。
2.额定电流的选取:根据电路设计的最大电流来选择合适的额定电流。
电感器的额定电流是指在额定条件下能稳定工作的电感器。
过大或者过小的额定电流都可能导致电感器失效或电容上升温度过高。
3.尺寸和封装:根据实际应用的空间限制和布局要求来选择合适的尺寸和封装形式。
电感器的尺寸和封装形式会对电感值、电容和自阻抗等参数产生影响。
4.频率特性和损耗:根据电路工作频率和损耗要求来选择合适的电感器。
电感器的频率特性和损耗会对电路性能产生影响,所以需要在选取时进行合理的考虑。
5.价格和供应:根据预算和可获得的供应来选择合适的电感器。
不同品牌和型号的电感器价格可能会有很大差异,同时是否能够长期供应也是选取时需要考虑的因素之一综上所述,电感作为一种常见的电子元件,在电路中起着重要的作用。
电路中的电感器选择与应用电感器是电路中常用的元件之一,它在电子产品的设计和制造中起着重要的作用。
本文将探讨电路中的电感器选择与应用,分析不同类型的电感器以及如何正确选择和使用它们。
一、电感器的基本原理电感器是一种储存电能的被动元件,其工作原理基于电磁感应。
当电流通过电感器时,会在其周围形成磁场,并在断开电流时产生电压。
电感器主要由线圈、铁芯和外壳组成。
通过不同的结构和材料,可以实现不同的电感特性和用途。
二、常见的电感器类型1. 铁芯电感器:铁芯电感器是一种常见的电感器类型,其线圈通过铁芯增强磁场效应。
这种类型的电感器具有较高的电感值和较低的电阻值,适用于需要较大电感值的电路,如滤波电路和振荡电路。
2. 空芯电感器:空芯电感器是将线圈置于空心的结构中,没有铁芯增强磁场。
这种类型的电感器具有较低的电感值和较高的电阻值,适用于需要较小电感值的电路,如调谐电路和噪声滤除电路。
3. 可调电感器:可调电感器是一种可以通过调节其特定参数来改变电感值的电感器。
它适用于需要频繁调整电感值的应用,如无线通信和调频调幅电路。
三、电感器的选择原则在选择电感器时,需要考虑以下几个因素:1. 电感值:根据电路设计需求,选择适当的电感值,确保电路的工作稳定性和性能。
2. 频率特性:根据电路工作频率范围选择电感器,以确保其在所需频率范围内具有良好的响应。
3. 电流能力:根据电路中的电流要求选择电感器,确保其能够承受电路中的最大电流。
4. 尺寸和封装:考虑电感器的尺寸和封装形式,确保其与电路板的布局和安装要求相匹配。
四、电感器的应用电感器在电子产品中有广泛的应用,以下是一些常见的应用领域:1. 电源电路:电感器用于稳定电源输出,提供稳定的电流和电压给其他电路。
2. 滤波电路:电感器用于滤波电路中,滤除电源中的噪声和干扰信号,提供纯净的电源信号给其他电路。
3. 振荡电路:电感器在振荡电路中用于产生谐振频率,实现电路的振荡功能。
4. RF电路:电感器在无线通信和射频电路中扮演重要角色,用于信号传输、调谐和滤波。
电感的应用及选型电感,从工艺技术上,领先的基本上是三大日系厂商:TDK、Murata、Taiyo Yuden。
这三家的产品线完整,基本上可以满足大多数需求。
三家都有相应的选型软件,有电感、电容等所有系列的产品及相关参数曲线。
在电路设计中,电感主要有三大类应用:·功率电感:主要用于电压转换,常用的DCDC电路都要使用功率电感;·去耦电感:主要用于滤除电源线或信号线上的噪声,EMC工程师应该熟悉;·高频电感:主要用于射频电路,实现偏置、匹配、滤波等电路。
功率电感功率电感通常用于DCDC电路中,通过积累并释放能量来保持连续的电流。
功率电感大都是绕线电感,可以提高大电流、高电感;多层片状功率电感也越来越多,通常电感值和电流都较低,优点是成本较低、体积超小,在手机等空间限制较大的产品中有较多应用。
功率电感需要根据所选的DCDC芯片来选型。
电感值通常应使用DCDC芯片规格书推荐的电感值;电感值越大,纹波越小,但尺寸会变大;通常提高开关频率,可以使用小电感,但开关频率提高会增加系统损耗,降低效率;额定电流功率电感一般有两个额定电流,即温升电流和饱和电流;当电感有电流通过的时候,由于损耗的存在,电感发热而产生温升,电流越大,温升越大;在额定的温度范围内,允许的最大电流即为温升电流。
增加磁芯的磁导率,可以提高电感值,通常使用铁磁性材料做磁芯。
铁磁性材料存在磁饱和现象,即当磁场强度超过一定值时,磁感应强度不在增加,即磁导率下降了,也就是电感下降了。
在额定电感值范围内,允许的最大电流即为饱和电流。
磁滞回线:磁性材料-------铁氧磁体,比重计,多孔性材料密度仪,液体密度计,固体颗粒体积测试仪,磁性材料密度仪。
通常对DCDC电路设计,要计算峰值(PEAK)电流和均方根(RMS)电流,通常规格书中会给出计算公式。
温升电流是对电感热效应的评估,根据焦耳定律,热效应需要考虑一段时间内的电流对时间的积分;选择电感时,设计RMS电流不能超过电感温升电流。
如何正确选择电路中的电感器电感器是电路中常见的元件之一,它可以存储电能,并且在电路的稳定性和性能调节中起到关键作用。
正确选择电路中的电感器对电路的工作效果和可靠性有着重要影响。
本文将介绍如何正确选择电路中的电感器,包括选择适当的电感器参数、考虑电感器的损耗和温度特性、工作频率范围的选择等。
一、选择适当的电感器参数在选择电感器时,首先需要了解电感器的一些基本参数。
最常见的参数是电感值(单位为亨利)和额定电流(单位为安培)。
在实际应用中,根据不同的电路需求,需要根据电路的工作电流和所需的电感大小来选取合适的电感器。
通常来说,电感值应该略大于电路所需的电感大小,以确保电路的稳定性和性能。
其次,还需要考虑电感器的阻值。
电感器由于自身导线的电阻会引入一定的能量损耗,导致电感器的有效电感降低。
因此,在选择电感器时,需要注意电感器的阻值。
一般来说,阻值越小,电感器的效果越好。
而高阻值电感器则会引入额外的能量损耗,影响电路的性能。
此外,还需要考虑电感器的容差。
电感器的容差是指其实际电感值与标称电感值之间的差异。
对于一些对电感值有较高要求的电路,需要选择容差较小的电感器,以确保电路的精度和稳定性。
二、考虑电感器的损耗和温度特性电感器除了具有一定的电感值和阻值外,还会引入一定的损耗。
在实际应用中,这种损耗会导致电感器发热,进而影响电路的性能。
因此,在选择电感器时,需要特别关注电感器的损耗和温度特性。
一般来说,电感器的损耗主要包括两种类型:铁损和电阻损耗。
铁损是指由于电感器芯材对磁场的反应而引起的损耗,而电阻损耗则是由于电感器自身导线的电阻而引起的损耗。
在选择电感器时,需要根据具体应用场景来判断哪种损耗对电路影响更大,并选择相应的电感器。
此外,电感器的温度特性也需要考虑。
电感器的电感值和阻值随着温度的变化而变化,这可能会对电路的工作稳定性产生影响。
因此,在选择电感器时,需要综合考虑其温度特性,确保电路在不同温度下都能正常工作。