一·乃氏图的一般作图法
1·写出 G ( j w ) 和G( jw)表达式; 2·分别求出 w 0 和 w时的 G ( j w ) ;
3·求乃氏图与实轴的交点,交点可利用 ImG(jw)0或 G(jw)n180o
的关系式求出;
4·求乃氏图与虚轴的交点,交点可利用 ReG(jw)0或 G(jw)n90o
K;
(T 1s1 )(T 2s1 )
K ,T 1,T 20
试概略绘制系统开环幅相曲线。
解:由于惯性环节的角度变化为 ~-900,故该系统开环幅
相曲线中
起点为:
终点为:
系统开环频率特性
A (0)K,
(0)00
A ( ) 0 , ( )2 ( 90) 0 10 80
G (j)K [1 (1 T 1 T T 12 2 2 2) 1 (j (T T 1 22 T 22 ))]
即多环节传递函数的幅频特性是各环节模的乘积,相频特性是各环节 相位角之和。
7
自动控制原理
§4-2频率响应的极 频率响应G(jw)是输入频率w的复变函数,是一种变换,当w从0逐渐增长至
时,G(jw)作为一个矢量,其端点在复平面相对应的轨迹就是频率响
应的极坐标图,亦叫坐做乃标氏图图((Nyq乃uist氏曲线图) )
传递函数G(s)
S=jw
频率特性G(jw)
注:系统频率特性分析法是一种用“稳态”的方法(即输出稳态时 的正弦信号,不考虑过度过程)来分析系统的动态特性(稳,准, 快)
5
自动控制原理
二·频率特性的一些概念
G (jw ) U (w )jV (w )
幅频特性 A (w ) G (jw )[U (w )]2 [V (w )]2
(jw K)(j(wjw1T11)1()j(wjw2T21).1..)...