7贝塞尔函数
- 格式:docx
- 大小:15.28 KB
- 文档页数:4
贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。
贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。
本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。
一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。
第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。
它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。
第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。
2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。
3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。
第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。
第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。
二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。
第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。
第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。
2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。
3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。
贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
贝塞尔函数和初等函数是在物理和工程中最常用的函数。
贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。
这样做能带来好处,比如消除了函数在=0点的不光滑性。
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。
因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。
最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。
第七章贝塞尔函数7.1 Bessel 方程及其幂级数解定义:称Bessel 方程为:222'''()0x y xy x n y ++-=其中,n 为任意实数。
当n>0时,取级数解c k k k y a x ∞+==∑有120'()''()(1)c k c k k k k k y a c k xy a c k c k x ∞∞+-+-===+=++-∑∑代入原式,222222012{[()(1)()]}()[(1)]0k kk k a c k c k c k aa x a c a a c n x ∞-=++-++-++-++-=∑有222201222()0[(1)]0[()]0k k a c n a c n a c k n a --=+-=+-+=得1,0c n a =±=,取c=n, 有222()k k a a n k n -=+-定理:212200,1,...(1)!2!()!m m mma m n a m n m +==-=+ 取022!na n =得22(1)2!()!mmn m a m n m +-=+有一个特解220(1)()2!()!mn m n n m m y J x x m n m ∞++=-==+∑取c=-n, 得另一个特解2220(1)()2!()!m n mn n m m x y J x m n m -+∞--+=-==-+∑称J n (x)为第一类Bessel 函数。
当n 不为整数x-->0时,有J n (x)-->0, J -n (x)-->∞, 则J n (x)-与J -n (x)不相关。
由齐次线性常微分方程通解的结构定理知道,当n 不为整数,Bessel 方程的通解为()()n n y aJ x bJ x -=+由级数收敛差别法,有22211limlim 04()m m m m a a m n m R→∞→∞-===+ 式中R 为收敛半径,可知R=∞,则J n (x)与J -n (x)的收敛范围为0<|x|<∞ 定义:当n 为整数时,J n (x)-称为整数阶Bessel 函数 例计算J 0(1)的前三项和。
贝塞尔函数的推导一、什么是贝塞尔函数贝塞尔函数是一类特殊的数学函数,以法国数学家皮埃尔-西蒙·拉普拉斯的朋友雅各布-路易·贝塞尔(Jacob Ludwig Carl Bessel)之名命名。
贝塞尔函数在物理学、工程学、计算机图形学等领域都有广泛应用。
贝塞尔函数可以由贝塞尔微分方程推导而来,表达式中包含了贝塞尔函数的阶数和自变量。
贝塞尔函数包括贝塞尔第一类函数(记作Jn(x))和贝塞尔第二类函数(记作Yn(x)),它们是贝塞尔微分方程的两个线性无关解。
二、贝塞尔函数的推导贝塞尔函数的推导是从贝塞尔微分方程出发,通过一系列变换和求解得到的结果。
下面将详细介绍贝塞尔函数的推导过程。
2.1 贝塞尔微分方程贝塞尔微分方程是一个二阶常微分方程,表示为:x^2y’’ + xy’ + (x^2 - n^2)y = 0其中,y’’表示y对x的二阶导数,y’表示y对x的一阶导数,n为贝塞尔函数的阶数。
2.2 贝塞尔函数的级数解通过将贝塞尔微分方程进行级数展开,得到贝塞尔函数的级数解。
假设贝塞尔函数的级数解表示为:y(x) = Σ An*x^(n+r)代入贝塞尔微分方程,得到:Σ (n+r)(n+r-1)An x^(n+r) + Σ (n+r)An*x^(n+r) + Σ (x^2 - n2)An x(n+r) = 0整理得到:Σ [(n+r)*(n+r-1) + (n+r) + (x^2 - n^2)] * An*x^(n+r) = 0由于An与x无关,所以方程中每一项系数都必须为零,即:(n+r)*(n+r-1) + (n+r) + (x^2 - n^2) = 0化简得到:(n+r)^2 - n^2 = 0解得:r = ±n所以,贝塞尔函数的级数解可以表示为:y(x) = Σ A*x^(n+r)其中,r为贝塞尔函数的阶数。
2.3 贝塞尔函数的通解贝塞尔函数的通解是将级数解带入初始条件得到的。
贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。
中文名贝塞尔函数外文名Bessel Function意义一类特殊函数的总称方程的解无法用初等函数系统地表示命名F.W.贝塞尔的姓氏分类数学
目录
1 基本概念
2 基本内容
3 分类
4 应用范围
基本概念编辑
是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:
这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带
来好处,比如消除了函数在点的不光滑性)。
基本内容编辑
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日
等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
现实背景和应用范围
贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的,因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,最典型的问题有:* 在圆柱形波导中的电磁波传播问题;
* 圆柱体中的热传导定律|热传导问题;
* 圆形(或环形)薄膜的振动模态分析问题;
贝塞尔函数的实例:一个紧绷鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。
实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加。
第一类贝塞尔函数
第一类阶贝塞尔函数是贝塞尔方程当为整数或非负时的解,须满足在时有限。
这样选取和处理''J''<sub>α</sub>的原因见本主题下面的贝塞尔函数#性质|性质介绍;另一种定义方法是通过它在点的泰勒级数展开(或者更一般地通过幂级数展开,这适用
于α为非整数):
上式中为Γ函数(它可视为阶乘|阶乘函数向非整型因变量和自变量|自变量的推广)。
第一类贝塞尔函数的形状大致与按速率衰减的正弦或三角函数|余弦函数类似(参见本页下面对它们渐进形式的介绍),但它们的零点并不是周期性的,另外随着''x''的增加,零点的间隔会越来越接近周期性。
图2所示为0阶、1阶和2阶第一类贝塞尔函数的曲线()。
如果;不为整数,则和线性无关,可以构成微分方程的一个'''解系'''。
反之若是整数,那么上面两个函数之间满足如下关系:=
于是两函数之间已不满足线性无关条件。
为寻找在此情况下微分方程与线性无关的另一解,需要定义'''第二类贝塞尔函数'''。
第二类贝塞尔函数(诺依曼函数)。