大脑皮层机能定位
- 格式:ppt
- 大小:2.37 MB
- 文档页数:40
大脑皮层机能定位一、实验目的1.掌握开颅技术;2.观察大脑皮层不同区域的功能。
二、实验原理皮层运动区的功能特点:1.对躯体运动的调节为交叉性支配,头面部运动基本为双侧性支配;2.具有精细的功能定位;3.运动精细、复杂的肌肉,其皮层代表区面积大4.运动区定位由上到下的安排是倒置的三、实验器材家兔;BL-420生理机能实验系统、家兔常规手术器械、25﹪的氨基甲酸乙酯、兔颅骨钻、兔咬骨钳、骨蜡、纱布,棉花、银球刺激电极、温石蜡油。
四、实验步骤1.麻醉:耳缘静脉注射25﹪的氨基甲酸乙酯: 1g/1kg体重;2.气管插管;3.将动物俯卧,头顶部剪毛后用手术刀由眉间至枕骨部纵向切开皮肤,沿中线切开骨膜。
用手术刀柄自切口处向两侧刮开骨膜,暴露额骨及顶骨,在冠状缝和人字缝之间钻孔后,用咬骨钳咬骨扩展创口。
向前开颅至额骨前部,向后开至人字缝前,不要掀动靠近人字缝的顶骨。
适当远离矢状缝,勿损伤矢状窦。
可将手术刀柄伸入矢状缝下使矢状窦与骨板分离扩创时勿伤及硬脑膜,小心挑起硬脑膜并去除之,暴露大脑皮层,滴上少量温热液体石腊以防止皮质干燥;4.放松动物四肢;5.打开BL-420 生理机能实验系统(只用其刺激器);6.刺激大脑皮层的不同区域,观察躯体肌肉活动的反应:把银球电极接触到皮质运动代表区,无关电极固定在切开的头皮上。
也可将两个银球电极同时放在脑皮层上进行刺激;刺激参数:连续单刺激,波宽0.1ms,电压10V,频率50Hz;运动反应潜伏期一般较长,每次刺激应持续10秒左右;主要观察指标:咀嚼活动、前后肢活动和扭头活动定位;7、绘出大脑半球背面观的轮廓图,标出躯体肌肉运动代表点五、实验结果见手绘家兔大脑皮层定技能定位图。
六、结论电刺激大脑皮层可引起相应部位的运动;皮层和躯体的对应关系为:中央后区为颜面和头颈运动区,向后为前肢运动区。
皮层与躯体的对应为左右交叉的。
七、讨论1.麻醉深度本次实验不能验使用和以往相同的麻醉剂量,应略小于1g乌拉坦/kg体重。
大脑皮层运动机能定位实验报告一、实验背景及目的大脑皮层是人体运动的控制中心,其运动机能定位对于研究运动控制机制具有重要意义。
本实验旨在通过记录大脑皮层神经元的活动,探究不同部位对不同肢体的运动控制作用。
二、实验原理1. 大脑皮层神经元活动记录技术采用多电极阵列技术,将电极阵列放置于大脑皮层表面,记录神经元的放电活动,并进行信号分析和处理。
2. 运动刺激通过给予不同肢体的刺激(如触摸、挠痒等),引发相应肢体的运动反应,并记录大脑皮层神经元的反应。
3. 数据分析通过对记录到的神经元放电活动进行分析和处理,确定不同部位对不同肢体的运动控制作用。
三、实验步骤及方法1. 实验前准备:① 准备多电极阵列:将多个电极组成一个阵列,并连接到数据采集器上;② 病人手臂或腿部暴露在外,以便进行刺激。
2. 实验过程:① 给予不同肢体的刺激,如轻触、挠痒等;② 记录大脑皮层神经元的放电活动;③ 对数据进行分析和处理,确定不同部位对不同肢体的运动控制作用。
3. 实验后处理:对记录到的数据进行分析和处理,并绘制相应图表和曲线,以便进一步研究大脑皮层运动机能定位。
四、实验结果及分析通过实验记录和数据分析,可以得出以下结论:1. 大脑皮层的不同部位对不同肢体的运动控制作用存在差异;2. 不同肢体的刺激会引发相应部位神经元的放电活动;3. 可以通过多电极阵列技术记录大脑皮层神经元放电活动,并进行信号分析和处理。
五、实验总结及展望本实验通过记录大脑皮层神经元的放电活动,探究了不同部位对不同肢体的运动控制作用。
未来可以进一步研究大脑皮层运动机能定位与神经系统疾病的关系,为神经系统疾病的治疗提供新思路和方法。
大脑皮层运动机能定位与去大脑僵直实验目的:通过电刺激大脑皮层运动区引起躯体运动效应,观察皮层运动区机能定位现象,进一步领会大脑皮层运动的机能定位及其对肌体运动的调节作用。
实验原理 :大脑皮层运动区是调节躯体运动机能的高级中枢。
它通过锥体系和锥体外系下行通路,控制脑干和脊髓运动神经元的活动,从而控制肌肉运动。
电刺激皮层后发生的效应在人和高等动物的中央前回最为明显,称为皮层运动区机能定位或运动的躯体定位结构。
运动皮层的功能特征:①对侧性支配,但对头面部肌肉的运动,如咀嚼、喉及脸上部运动的支配是双侧性的;②具有精细的机能定位,呈倒立的“小人”样分布。
③身体不同部位在皮层的代表区的大小与肌肉运动的精细、复杂程度有关。
在中脑上丘与下丘之间及红核的下方水平面上将麻醉动物脑干切断,称为去大脑动物。
手术后动物立即出现全身肌紧张加强、四肢强直、脊柱反张后挺现象,称为去大脑僵直(强直)。
主要是由于中脑水平切断脑干以后,来自红核以上部位的下行抑制性影响被阻断,网状抑制系统的活动降低,易化系统的作用因失去对抗而占优势,导致伸肌反射的亢进。
网状结构中存在抑制和加强肌紧张及肌运动的区域,前者称为抑制区,位于延髓网状结构腹内侧部;后者称易化区,包括延髓网状结构背外侧部、脑桥被盖、中脑中央灰质及被盖;也包括脑干以外的下丘脑和丘脑中线群等部分。
和抑制区相比,易化区的活动较强,在肌紧张的平衡调节中略占优势。
去大脑强僵直是一种增强的牵张反射。
动物与器材:家兔、常用手术器械、咬骨钳、骨钻、止血钳、剪毛剪、生物机能实验系统、双电极、兔体手术台、石蜡油、20%氨基甲酸乙酯、棉球、温热生理盐水。
方法与步骤:1、取一只家兔,以2%戊巴比妥钠1ml/kg体重从耳缘静脉注射,轻度麻醉。
将其麻醉后腹位固定于手术台上。
用剪毛剪将头顶部被毛剪去,再用手术刀由眉间至枕骨部位纵向切开皮肤,沿中线切开骨膜,用手术刀柄自切口处向两侧剖开骨膜,暴露额骨及顶骨。
用骨钻在一侧的顶骨上开孔(勿伤及脑组织)后将咬骨钳小心伸入孔内,自孔处向四周咬骨以扩展创口。
大脑皮层运动机能定位实验报告
为了研究人类运动控制的神经机制,科学家们经常使用脑电图(EEG)和功能磁共振成像(fMRI)等技术来研究大脑皮层的运动机能定位。
本实验旨在通过EEG记录和分析来确定人类大脑皮层中控制手指运动的区域。
实验对象为10名健康成年男性,每位受试者均签署了知情同意书。
实验过程中,受试者被要求坐在舒适的椅子上,然后戴上EEG电极帽。
电极帽上配备了64个电极,分别位于头皮上的不同位置,用于记录大脑皮层的电活动。
受试者被要求放松身体,专注于手指运动任务。
实验任务为受试者用右手拇指尽可能快地按下一个按钮,每次按下按钮后立即松开。
在完成手指运动任务的同时,EEG记录了大脑皮层的电活动。
实验过程中,每位受试者需要进行多次手指运动任务,以确保数据的可靠性。
完成实验后,科学家们使用专业软件对EEG 数据进行分析和处理。
通过EEG记录和分析,科学家们发现,当受试者进行手指运动任务时,大脑皮层的运动区域会产生特定的电活动。
这些电活动可以被记录并用于定位大脑皮层的运动区域。
通过EEG数据的分析,科学家们成功地确定了大脑皮层中控制手指运动的区域。
本实验结果表明,通过EEG记录和分析可以准确地定位大脑皮层的运动区域,从而深入研究人类的运动控制神经机制。
这一结果对于神经科学和康复医学的发展具有重要意义。
本实验通过EEG记录和分析成功地定位了大脑皮层中控制手指运动的区域。
这一成果对于深入研究人类运动控制神经机制具有重要意义,为神经科学和康复医学的发展提供了新的思路和方法。
大脑皮质功能定位和边缘系统大脑皮质的功能定位:第I駅体运动区:位于中央前回和中央旁小叶前部,包括Brodmann第4区和第6区。
身体各部在此区的投影特点为:①上下颠倒,但头部是正的。
②左右交叉,③身体各部投影区的大小取决于功能的重要性和复杂程度。
第I躯体感觉区:位于中央后回和中央旁小叶后部,包括3、1、2区。
接受背侧丘脑腹后核传来的对侧半身痛、温、触、压以及位置觉和运动觉。
身体各部在此区的投射特点是:①上下颠倒,但头部也是正的。
③身体各部在投射范围的大小取决于该部感觉的敏感程度。
视区:位于枕叶内侧面距状沟两侧的皮质(17区)。
一侧视区接受同侧视网膜颛侧半和对侧视网膜鼻侧半的纤维经外侧膝状体中继传来的视觉信息。
损伤一侧视区,可引起双眼视野同向性偏盲。
听区:位于外侧沟下壁的额横回(41、42区)。
每侧听区接受自内侧膝状体传来的两耳听觉冲动。
因此,一侧听区受损,不致引起全聋。
运动性语言中枢:位于额下回的后部(44、45区),又称Broca区。
此区受损,产生运动性失语症,即丧失了说话能力,但仍能发音。
听觉性语言中枢:位于皺上回后部(22区)。
此区受损,想者虽听觉正常,但听不懂别人讲话的意思,也不能理解自己讲话的意义,称感觉性失语症。
书写中枢:位于额中回后部(8区)医学教育网'搜集整理,靠近中央前回的上肢代表区。
此区受损,虽然手的运动正常,但不能写出正确的文字,称失写症。
视觉性语言中枢:位于角回(39区),靠近视区。
此区受损时,视觉正常,但不能理解文字符号的意义, 称失读症,也属于感觉性失语症。
边缘系统limbic system由与边缘叶有关的皮质及皮质下结构(如杏仁体、下丘脑、上丘脑、背侧丘脑前核和中脑被盖等)组成边缘叶 limbic lobe在半球内侧面,位于脏肮体周用和侧脑室下角底壁的一圈弧形结构:隔区(包括腓肮体下区和终板旁回)、扣带回、海马旁回、海马和齿状回等,它们属于原皮质和旧皮质。
边缘系统是指高等脊推动物中枢神经系统中由古皮层、旧皮层演化成的大脑组织以及和这些组织有密切联系的神经结构和核团的总称。