陶瓷粉体基础--制备
- 格式:ppt
- 大小:11.11 MB
- 文档页数:57
固相反应法生产陶瓷粉体一、 固相反应法的特点固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。
对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。
另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。
固相法其原料本身是固体,这较之于液体和气体都有很大的差异。
固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。
[1]二、 物质粉末化机理一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。
另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。
三、 固相反应的具体方法1、 机械粉碎法主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。
目前已形成各种方法,如滚转磨、振动磨和平面磨。
采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。
其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。
2、热分解法热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相):1211212S S G S S G G →+→++第一个式子是最普通的,第二个式子是第一个式子的特殊情况。
热分解反应基本是第一式的情况。
3、 固相反应法由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。
陶瓷粉体的制备及性能测定实验一、实验目的1、掌握陶瓷粉体制备的原理和常用方法及设备;2、了解影响陶瓷粉体制备的各种因素;3、掌握粉料颗粒分成的表示方法和测定方法;二、实验原理粉体的制备方法分两种。
一是粉碎法;二是合成法。
粉碎法是由粗颗粒来获得细粉的方法,通常采用机械粉碎。
现在发展到采用气流粉碎技术。
一方面,在粉碎的过程中难免混入杂质;另一方面,无论哪种粉碎方式都不易制得粒径在1μm以下的微细颗粒。
合成法是由离子、原子、分子通过反应、成核和长大、收集、后处理来得到微细颗粒的方法。
这种方法的特点是可获得纯度、粒度可控均匀性好且颗粒微细的粉体。
并且可以实现颗粒在分子级水平上的复合、均化。
通常合成法包括固相法、液相法和气相法。
陶瓷干压成形所用的粉料要有一定的粒度、颗粒分布范围的要求,粒度过小,则不易排气、压实,易出现分层现象;同时还要求颗粒分布范围要窄,否则也不易压实,同时还会影响产品的强度。
粉料的颗粒分布的测定方法有很多,本实验选用筛析法,即:将一定量的陶瓷粉料用振动筛筛析,用各规格筛的筛余来表示其颗粒的分布。
三、实验仪器设备1、陶瓷粉体制备设备:颚式破碎机、双罐快速球磨机、振动球磨机、湿法球磨机、行星球磨机、气流粉碎机。
2、陶瓷粉体性能检测仪器:振动筛、激光粒度分布测定仪。
四、粉碎设备的使用陶瓷工业广泛使用的粉碎设备有:(1) 颚式破碎机:用于大块原料的粗加工。
粒度粗、进料和出料的粉碎比较小(约为4)而且细度调节范围也不大;(2) 轮碾机:属中碎设备。
物料在固定碾盘和滚动的碾轮之间相对滑动,在碾轮的重力作用下被研磨和压碎。
粉碎比较大(约10以上)。
不适合碾磨含水量大于15%的物料;(3) 球磨机:为陶瓷工业使用最广泛的细碎设备。
湿球磨粉碎效率更高。
物料在旋转的筒内与比重较大的介质(球、棒)相互撞击和研磨而被磨细。
影响球磨效率的主要因素如下:①球磨机转速:球磨介质在离心力的作用下上升到滚筒的上部,自由落下砸在磨料上时,球磨的效率最高。
第五章高纯超细粉末的制备新工艺一、概述高技术陶瓷的制造成本粉体的重要性质:组成、粒子形状、结晶性、集合状态理想的陶瓷粉末:颗粒尺寸小、结晶形态、颗粒形态、颗粒尺寸分布、纯度、无团聚、流动性---二、超细粉末制备方法的分类机械方法(物理制备):球磨、砂磨、振动磨、星形磨、气流粉碎化学制备法:(1)固相法:氧化还原法、热分解法、元素直接反应法(2)液相法:共沉淀法、盐溶液水解法、醇盐水解法、溶胶-凝胶法、水热合成法、溶剂热法、微乳法、加热煤油(石油)法、喷雾干燥法、火焰喷雾法、冷冻干燥法---(3)气相法:气相合成法、等离子体法、激光制粉以ZrO2为例:1. ZrSiO4−H2Na2SiO3﹒nH2O−O−→−NaOH Na2ZrO3-Na2SiO3−−→过滤→Na2ZrO3−−→−HCl过滤掉SiO2gel→ZrOCl2﹒8H2O−煅烧ZrO2→结晶纯ZrOCl2﹒8H2O−−→2.ZrSiO4+4C+4Cl2→ZrCl4+SiCl4+4CO, 再氧化→ZrO23.ZrOCl2﹒8H2O, Zr(SO4)2﹒15H2O, ZrCl4 , Zr醇盐等三、超细粉的测试与表征1、粒径沉降法(重力沉降法、离心沉降法)激光光散射法显微镜法(光学、电子)XRD法比表面积法2、表面电性Zeta电位3、表面成分光电子能谱(XPS、UPS)俄歇电子能谱红外光谱4、成分化学组成:化学分析、能谱分析、光谱分析、XRF ---相结构:XRD 、高分辨电镜晶格条纹相---四、机械粉碎法超细粉碎粉体特性变化:粒子由大变小、粒度分布变化、比表面增加、容积变化、形状变化、流动性变化、分散性变化、均匀性(均匀粒子排列)、纯度变化1、球磨法2、砂磨(搅拌磨)3、振动磨4、星形磨(行星磨)5、气流粉碎导向式单轨道式机械力化学、机械合金化---五、化学制备法1、固相合成法及氧化还原法:立方ZrO2、MgAl2O4、3Al2O3·2SiO2 - - - Si + C →SiCSiO2 + 3C →SiC + 2CO3SiO2 + 6C +2N2→Si3N4 + 6CO2、热分解法Al2(NH4)2(SO4)4•24H2O各种锆盐加热时的存在相和结晶尺寸3、酒精干燥4、喷雾干燥法5、喷雾热分解法(1)火焰喷雾法(2)等离子体法6、冷冻干燥法7、加热煤油法、加热石油法加热石油干燥法制备的ZrO2的平均粒径组成煅烧温度比表面积s2/g 平均粒径um硫酸盐6MgO 800℃1h 15.9 0.064 6MgO 1200℃4h 0.89 1.18 12MgO 800℃1h 13.1 0.08 6CaO 1200℃3h 1.46 0.71 6CaO 1200℃4h 0.94 1.12 12CaO 1200℃4h 0.67 1.57醋酸盐6CaO 1200℃4h 1.71 0.58 12CaO 1200℃4h 1.58 0.658、共沉淀法 [Zr 4(OH)8(H 2O)16]8+[Zr 4(OH)8(H 2O)16]8+−−→−O H 2[Zr 4(OH)16-n (H 2O)n+8]n++(8-n)H +a.浓度b. pH 值c.表面活性剂d.洗涤e.脱水f.硬团聚g.煅烧温度 9、盐水溶液水解法ZrOCl 2 + (3+n)H 2O → Zr(OH)4•nH 2O ↓+2HCl ↑ 或 ZrOCl 2 + 3H 2O → ZrO 2•H 2O ↓+ 4HCl ↑ 10、溶胶-凝胶法(Sol – Gel )金属醇盐:M(OR)n(1) 金属与醇直接反应 M +nROH = M(OR)n +2n H 2 (2) 金属氯化物在氨的存在下与醇反应 MCl n + nROH+nHN 3 = M(OR)n + nNH 4Cla. 水解与聚合水解反应:M(OR)n +xH 2O →M(OH)x (OR)n-x +xROH 失水聚缩反应:-M-OH+HO-M-→-M-O-M-+H 2O 失醇聚缩反应:-M-OH+RO-M-→-M-O-M-+ROH形成化合物的总反应:M(OR)n +xH 2O →M(OH)x (OR)n-x +xROHM(OH)x (OR)n-x →MO n/2+2x H 2O+(n-x)ROHb. 凝胶的形成:初始粒子成核、长大、连接成键形成网络c. 凝胶的干燥d.煅烧11、醇盐水解法 12、水热法 (1)水热结晶法 (2)水热分解法ZrSiO 4 18.43 Ca(OH)2 14.9 NaOH 4.67(浓度7wt%) 液/固比 2 Ca(OH)2/ ZrSiO 4 mol 比 2温度 350℃ 蒸汽压 170×105Pa 反应时间 8h ZrSiO 4+xCa(OH)2 → ZrO 2+xCaO •SiO 2•H 2O+(x-1)H 2O (3)水热氧化法 Zr+H 2O → ZrO 2+H2 ↘ZrH x +O 2↗ 13、气相反应法足够的过饱和度 高的平衡常数 反应温度 成核剂3/106⎪⎪⎭⎫ ⎝⎛•=ρπN M C D气相反应法制备的ZrO2反应温度ZrCl4注入温度气体组成ZrCl4 O2N2流量ml/min粒径nm四方相1100 1100-1250 0.6 54.2 45.2 221 5-25 100 1100 1100-1250 0.7 52.5 46.8 229 4-8 100 1100 600 1.2 53.9 45.3 223 40-180 10 1100 600 1.2 89.8 9.0 223 120-800 7六、高熔点氮化物及碳化物微粉体的合成氮化物、碳化物微粉的制造法。
陶瓷粉体的制备及其在陶瓷制品中的应用第一章陶瓷粉体的制备方法陶瓷粉体是制造陶瓷制品的重要原材料。
为了获得精细、均匀、高纯度的陶瓷粉体,需要采用各种方法进行制备。
1. 干法制备干法制备是在物理或化学作用下,将陶瓷原料研磨成小颗粒,并通过筛网分级,使其达到所需的颗粒大小和分布。
干法制备可以采用磨细、粉碎和机械法等不同方法。
其中磨细法是将陶瓷原料加入磨料中进行磨细。
磨料可以是陶瓷球、圆锥桶、圆柱罐等,在不断的冲击、磨擦和摩擦作用下,使原料颗粒缩小,磨细并分散。
而粉碎法则是将陶瓷原料加入粉碎设备中进行高速旋转和撞击,达到破碎,并通过筛分制备所需粒度的陶瓷粉末。
2. 湿法制备湿法制备是将陶瓷原料和溶液混合搅拌,制成胶体状物质。
此时,可以通过超声波处理、热干燥、高速离心等方法,去除胶体中的水分和有害物质,还原成精细均匀的陶瓷粉末。
3. 气相制备气相制备是将气态陶瓷原料在保护气氛下加热至高温,使其分解,从而在炉内形成陶瓷粉末。
气相制备可以控制粉末质量、形态和制备过程中的污染,使其成为制备超细、高纯、均匀粒径的陶瓷粉末理想方法,但设备复杂,成本较高。
第二章陶瓷粉体的应用陶瓷粉体是制造各种陶瓷制品的必不可少的原料。
以下分别介绍其在建筑材料、电子元器件、汽车、生物医学等领域的应用。
1. 建筑材料陶瓷粉体可以用于建筑材料,如墙砖、地砖、水泥等。
高纯度的陶瓷粉末可以增加建筑材料的硬度、密度和韧性。
此外,陶瓷粉末对于加强建筑材料的耐热性、耐化学腐蚀性和耐磨性,也有显著的作用。
2. 电子元器件陶瓷粉体可以用于制造电子元器件,如电容器、晶体管、压敏电阻器、传感器等。
这些元器件需要高纯度的陶瓷粉体来保证其性能和稳定性。
陶瓷粉体可以增加元器件的耐压、耐高温、抗干扰能力,同时还可以缩小元器件的尺寸和重量。
3. 汽车陶瓷粉体可以用于汽车零部件。
陶瓷粉体可以制成高强度、低密度的车轮、刹车盘和发动机部件,以提高汽车的安全性和效率。
在发动机内部,使用陶瓷粉体制成的活塞、活塞环和汽缸套等部件,可以提高发动机的效率和可靠性。
第 节 第三节特种陶瓷粉体制备方法特种陶瓷粉体的制备方法:物理制备方法 物理制备方法和化 化 学合成法机械球磨法(滚筒式球磨机、振动磨、行星式研磨机等)物理制备方法气流粉碎法(气流磨) 物理气相沉积(PVD 物理气相沉积( PVD)法 )法第三节 特种陶瓷粉体制备方法 化学合成法:固相法 热分解法 热 固相反应 火花放电 溶出法 化学气相反应法CVD 气 相 法 气体中蒸发法PVD 化学气相凝聚法CVC 溅射法沉淀法 液 相 法 水热法 溶胶-凝胶法 喷雾法 蒸发溶剂热法第三节特种陶瓷粉体制备方法粉碎法 粉碎法——由粗颗粒来获得细粉的方法,通常采用 由粗颗粒来获得细粉的方法 通常采用 机械粉碎(机械制粉)。
现在已发展到采用气流粉碎 等。
但是无论哪种粉碎方式,都不易制得粒径在1 微米以下的微细颗粒。
机械混合制备多组分粉体工 艺简单 产量大 但得到的粉体组分分布不均匀 艺简单、产量大。
但得到的粉体组分分布不均匀, 特别是当某种组分很少的时候;而且这种方法常常 会给粉体引入杂质。
合成法——由原子、离子、分子通过反应、成核和 成长、收集、后处理来获得微细颗粒的方法(化学 制粉)。
特点 纯度高 粒度可控 均匀性好 颗粒微细 特点:纯度高、粒度可控,均匀性好,颗粒微细。
实 并且可以实现颗粒在分子级水平上的复合、均化。
合成法可得到性能优良的高纯、超细、组分均匀的 粉料,其粒径可达10nm以下,是一类很有前途的粉 体(尤其是多组分粉体)制备方法 但这类方法或需 体(尤其是多组分粉体)制备方法。
但这类方法或需 要较复杂的设备,或制备工艺要求严格,因而成本 也较高。
第三节 特种陶瓷粉体的制备一、特种陶瓷粉末的机械制备法以机械力使原材料变细的方法在陶瓷工业中应用也极为广 泛。
陶瓷原料进行破碎有利于提高成型坯体质量,提高致 密程度并有利于烧结过程中各种物理化学反应的顺利进行, 降低烧成温度。
主要介绍两种:球磨法和气流粉碎法第三节 特种陶瓷粉体的制备1、球磨法球磨法是十分常用的制取粉末的方法,但它也常常用来作为 球磨法是十分常用的制取粉末的方法 但它也常常用来作为 成型前的粉末准备工序。