固相法制备陶瓷粉体
- 格式:docx
- 大小:43.58 KB
- 文档页数:3
实验一固相法(solid-phase method)合成粉体粉体(powder)是大量固体粒子的集合系,是在物质本质结构不发生改变的情况下,分散或细化而得到的固态颗粒,但具有与固体不尽相同的性质。
粉体的特性,诸如颗粒度、颗粒形状、粒度分布、比表面积、团聚状态、吸附性质等对技术陶瓷的烧结性及显微结构有着决定性的影响,从而影响技术陶瓷的性能。
因此,制备质量优良的粉体是获得性能优越的技术陶瓷制品的重要基础。
固相法是制备技术陶瓷粉体的重要方法之一,主要通过固相反应得到粉体。
固相法制备粉体技术在技术陶瓷粉体的工业生产中,应用非常广泛。
固相法制备的粉体颗粒一般为几个微米~数十微米之间。
下面以BaTiO3粉体的制备为例,介绍固相法制备粉体的工艺过程。
一.原料碳酸钡(BaCO3) ,分析纯:二氧化钛(TiO2),分析纯。
二.仪器和设备氧化铝坩埚,烧杯,球磨机,高温炉(硅碳棒作发热体,Tmax = 1350 ℃,Pt-Rh-Pt热电偶测温), 干噪箱,电子天平。
三.实验步骤1 .配料计算预制备20 克BaTiO3粉体,计算所需要的BaCO3和TiO2用量。
其中,Ba /Ti (摩尔比)= l : 1 。
2 .称料在电子天平上分别称取所需要的BaCO3和TiO2,精确到0.01 克,放入烧杯中备用。
3 .混料采用湿式球磨混合的方法,将BaCO3和TiO2粉末原料进行充分混合。
球磨过程中,应采用玛瑙球,盛料容器应选用玻璃质或塑料质,避免使用铁质容器,以免铁质等受主杂质的混入,对BaTiO3陶瓷的电学性能产生不利影响。
料:球:水(质量比)=1 : l.5 : 2 ,球磨时间为20 -24 小时。
所用的水选用蒸馏水。
4 ,干燥将经球磨混合的原料放入烧杯中,然后在干燥箱中进行干燥处理:T=105℃,t = 12h 。
5 .焙烧将干混合料放入坩埚中,然后移入高温炉中进行熔烧。
焙烧的温度和时间为:T =1100-1150 ℃,t =2-4h,从而得到BaTiO3粉体。
固相反应法生产陶瓷粉体一、 固相反应法的特点固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。
对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。
另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。
固相法其原料本身是固体,这较之于液体和气体都有很大的差异。
固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。
[1]二、 物质粉末化机理一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。
另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。
三、 固相反应的具体方法1、 机械粉碎法主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。
目前已形成各种方法,如滚转磨、振动磨和平面磨。
采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。
其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。
2、热分解法热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相):1211212S S G S S G G →+→++第一个式子是最普通的,第二个式子是第一个式子的特殊情况。
热分解反应基本是第一式的情况。
3、 固相反应法由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。
ZnO压敏陶瓷的研究进展摘要:ZnO压敏陶瓷是众多压敏陶瓷中性能最优异的一种,它是以ZnO为主原料,通过掺杂Bi2O3、TiO2、Co2O3、MnO2、Cr2O3和Nb2O5等氧化物改性烧结而成。
本文通过介绍ZnO粉体的合成方法、掺杂改性等方面入手,对ZnO压敏陶瓷的发展趋势进行探讨,并针对某些共性问题提出自己的一些看法。
关键词:ZnO压敏陶瓷;掺杂;制备;发展趋势The development trends of ZnO varistor ceramic Abstract: The ZnO varistor ceramic is one of the varistor ceramics which with best properties. The main raw material is ZnO, then mixed with some oxides ,such as Bi2O3、TiO2、Co2O3、MnO2、Cr2O3、Nb2O5 and so on ,to change it’s properties and sinter it .This text briefly described the methods of producing ZnO powder and mixing something to change the properties of it .Present situation in development of varistor ceramic as well as its developing tendency was also analyzed .Some suggestions and opinions were proposed for problems on common characteristics. Key words: ZnO varistor ceramic; mixed; produce; developing tendency1.前言ZnO压敏陶瓷是一种多功能新型陶瓷材料,它是以ZnO主为体,添加若干其他改性金属氧化物的烧结体材料。
陶瓷粉体的制备及性能测定实验一、实验目的1、掌握陶瓷粉体制备的原理和常用方法及设备;2、了解影响陶瓷粉体制备的各种因素;3、掌握粉料颗粒分成的表示方法和测定方法;二、实验原理粉体的制备方法分两种。
一是粉碎法;二是合成法。
粉碎法是由粗颗粒来获得细粉的方法,通常采用机械粉碎。
现在发展到采用气流粉碎技术。
一方面,在粉碎的过程中难免混入杂质;另一方面,无论哪种粉碎方式都不易制得粒径在1μm以下的微细颗粒。
合成法是由离子、原子、分子通过反应、成核和长大、收集、后处理来得到微细颗粒的方法。
这种方法的特点是可获得纯度、粒度可控均匀性好且颗粒微细的粉体。
并且可以实现颗粒在分子级水平上的复合、均化。
通常合成法包括固相法、液相法和气相法。
陶瓷干压成形所用的粉料要有一定的粒度、颗粒分布范围的要求,粒度过小,则不易排气、压实,易出现分层现象;同时还要求颗粒分布范围要窄,否则也不易压实,同时还会影响产品的强度。
粉料的颗粒分布的测定方法有很多,本实验选用筛析法,即:将一定量的陶瓷粉料用振动筛筛析,用各规格筛的筛余来表示其颗粒的分布。
三、实验仪器设备1、陶瓷粉体制备设备:颚式破碎机、双罐快速球磨机、振动球磨机、湿法球磨机、行星球磨机、气流粉碎机。
2、陶瓷粉体性能检测仪器:振动筛、激光粒度分布测定仪。
四、粉碎设备的使用陶瓷工业广泛使用的粉碎设备有:(1) 颚式破碎机:用于大块原料的粗加工。
粒度粗、进料和出料的粉碎比较小(约为4)而且细度调节范围也不大;(2) 轮碾机:属中碎设备。
物料在固定碾盘和滚动的碾轮之间相对滑动,在碾轮的重力作用下被研磨和压碎。
粉碎比较大(约10以上)。
不适合碾磨含水量大于15%的物料;(3) 球磨机:为陶瓷工业使用最广泛的细碎设备。
湿球磨粉碎效率更高。
物料在旋转的筒内与比重较大的介质(球、棒)相互撞击和研磨而被磨细。
影响球磨效率的主要因素如下:①球磨机转速:球磨介质在离心力的作用下上升到滚筒的上部,自由落下砸在磨料上时,球磨的效率最高。
第五章高纯超细粉末的制备新工艺一、概述高技术陶瓷的制造成本粉体的重要性质:组成、粒子形状、结晶性、集合状态理想的陶瓷粉末:颗粒尺寸小、结晶形态、颗粒形态、颗粒尺寸分布、纯度、无团聚、流动性---二、超细粉末制备方法的分类机械方法(物理制备):球磨、砂磨、振动磨、星形磨、气流粉碎化学制备法:(1)固相法:氧化还原法、热分解法、元素直接反应法(2)液相法:共沉淀法、盐溶液水解法、醇盐水解法、溶胶-凝胶法、水热合成法、溶剂热法、微乳法、加热煤油(石油)法、喷雾干燥法、火焰喷雾法、冷冻干燥法---(3)气相法:气相合成法、等离子体法、激光制粉以ZrO2为例:1. ZrSiO4−H2Na2SiO3﹒nH2O−O−→−NaOH Na2ZrO3-Na2SiO3−−→过滤→Na2ZrO3−−→−HCl过滤掉SiO2gel→ZrOCl2﹒8H2O−煅烧ZrO2→结晶纯ZrOCl2﹒8H2O−−→2.ZrSiO4+4C+4Cl2→ZrCl4+SiCl4+4CO, 再氧化→ZrO23.ZrOCl2﹒8H2O, Zr(SO4)2﹒15H2O, ZrCl4 , Zr醇盐等三、超细粉的测试与表征1、粒径沉降法(重力沉降法、离心沉降法)激光光散射法显微镜法(光学、电子)XRD法比表面积法2、表面电性Zeta电位3、表面成分光电子能谱(XPS、UPS)俄歇电子能谱红外光谱4、成分化学组成:化学分析、能谱分析、光谱分析、XRF ---相结构:XRD 、高分辨电镜晶格条纹相---四、机械粉碎法超细粉碎粉体特性变化:粒子由大变小、粒度分布变化、比表面增加、容积变化、形状变化、流动性变化、分散性变化、均匀性(均匀粒子排列)、纯度变化1、球磨法2、砂磨(搅拌磨)3、振动磨4、星形磨(行星磨)5、气流粉碎导向式单轨道式机械力化学、机械合金化---五、化学制备法1、固相合成法及氧化还原法:立方ZrO2、MgAl2O4、3Al2O3·2SiO2 - - - Si + C →SiCSiO2 + 3C →SiC + 2CO3SiO2 + 6C +2N2→Si3N4 + 6CO2、热分解法Al2(NH4)2(SO4)4•24H2O各种锆盐加热时的存在相和结晶尺寸3、酒精干燥4、喷雾干燥法5、喷雾热分解法(1)火焰喷雾法(2)等离子体法6、冷冻干燥法7、加热煤油法、加热石油法加热石油干燥法制备的ZrO2的平均粒径组成煅烧温度比表面积s2/g 平均粒径um硫酸盐6MgO 800℃1h 15.9 0.064 6MgO 1200℃4h 0.89 1.18 12MgO 800℃1h 13.1 0.08 6CaO 1200℃3h 1.46 0.71 6CaO 1200℃4h 0.94 1.12 12CaO 1200℃4h 0.67 1.57醋酸盐6CaO 1200℃4h 1.71 0.58 12CaO 1200℃4h 1.58 0.658、共沉淀法 [Zr 4(OH)8(H 2O)16]8+[Zr 4(OH)8(H 2O)16]8+−−→−O H 2[Zr 4(OH)16-n (H 2O)n+8]n++(8-n)H +a.浓度b. pH 值c.表面活性剂d.洗涤e.脱水f.硬团聚g.煅烧温度 9、盐水溶液水解法ZrOCl 2 + (3+n)H 2O → Zr(OH)4•nH 2O ↓+2HCl ↑ 或 ZrOCl 2 + 3H 2O → ZrO 2•H 2O ↓+ 4HCl ↑ 10、溶胶-凝胶法(Sol – Gel )金属醇盐:M(OR)n(1) 金属与醇直接反应 M +nROH = M(OR)n +2n H 2 (2) 金属氯化物在氨的存在下与醇反应 MCl n + nROH+nHN 3 = M(OR)n + nNH 4Cla. 水解与聚合水解反应:M(OR)n +xH 2O →M(OH)x (OR)n-x +xROH 失水聚缩反应:-M-OH+HO-M-→-M-O-M-+H 2O 失醇聚缩反应:-M-OH+RO-M-→-M-O-M-+ROH形成化合物的总反应:M(OR)n +xH 2O →M(OH)x (OR)n-x +xROHM(OH)x (OR)n-x →MO n/2+2x H 2O+(n-x)ROHb. 凝胶的形成:初始粒子成核、长大、连接成键形成网络c. 凝胶的干燥d.煅烧11、醇盐水解法 12、水热法 (1)水热结晶法 (2)水热分解法ZrSiO 4 18.43 Ca(OH)2 14.9 NaOH 4.67(浓度7wt%) 液/固比 2 Ca(OH)2/ ZrSiO 4 mol 比 2温度 350℃ 蒸汽压 170×105Pa 反应时间 8h ZrSiO 4+xCa(OH)2 → ZrO 2+xCaO •SiO 2•H 2O+(x-1)H 2O (3)水热氧化法 Zr+H 2O → ZrO 2+H2 ↘ZrH x +O 2↗ 13、气相反应法足够的过饱和度 高的平衡常数 反应温度 成核剂3/106⎪⎪⎭⎫ ⎝⎛•=ρπN M C D气相反应法制备的ZrO2反应温度ZrCl4注入温度气体组成ZrCl4 O2N2流量ml/min粒径nm四方相1100 1100-1250 0.6 54.2 45.2 221 5-25 100 1100 1100-1250 0.7 52.5 46.8 229 4-8 100 1100 600 1.2 53.9 45.3 223 40-180 10 1100 600 1.2 89.8 9.0 223 120-800 7六、高熔点氮化物及碳化物微粉体的合成氮化物、碳化物微粉的制造法。
固相反应法生产陶瓷粉体
一、 固相反应法的特点
固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。
对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。
另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。
固相法其原料本身是固体,这较之于液体和气体都有很大的差异。
固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。
[1]
二、 物质粉末化机理
一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。
另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。
三、 固相反应的具体方法
1、 机械粉碎法
主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。
目前已形成各种方法,如滚转磨、振动磨和平面磨。
采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。
其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。
2、热分解法
热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相):
121
1212S S G S S G G →+→++
第一个式子是最普通的,第二个式子是第一个式子的特殊情况。
热分解反应基本是第一式的情况。
3、 固相反应法
由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。
首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。
在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显著地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。
另外,当即热上述粉体时,固相反
应以外的现象也同时进行。
一个烧结,另一个是颗粒的生长,这两种
现象均在同种原料间和反应生成物间出现。
对于固相反应生成的化合
物,原料的烧结和颗粒生长均使原
料的反应性降低,并且导致扩散距离增加和接触点密度的减少,所以
应尽量抑制烧结和颗粒生长。
4、 点火花放电法
把金属电极插入到气体或者液
体等绝缘体中,不断地增高电压,如果首先提高电压可观察到电流增
加,在某一点产生电晕放电,之后
即使不增加电压电流也会自然增加,
向瞬时稳定的放电状态即电弧放电
移动。
从电晕放电到电弧放电过程中的过度放电称为火花放电,火花
放电持续的时间很短,但是电压梯 度很高,电流密度很大,也就是说
火花放电在短时间内能释放出很大
的电能。
因此在放电的瞬间产生高
温,同时产生很强的机械能。
在煤
油之类的液体中利用,利用电极和被加工物之间的火花放电来进行放电加工是电加工中广泛使用的一种方法。
在放电加工中,电极、被加工物会生成工屑,如果我们积极地控制工屑的生成就有可能制造出微粉,也就是电火花放电法制造微粉。
图2 电火花发制备粉体装置示意图[3]
四、总结
除了上述制备方法之外还有溶出法等,固相法来制备陶瓷粉体方法很多,有着广泛的应用,是重要的制备陶瓷粉体的方法之一。
参考文献:
[1] 刘为良. 先进陶瓷工艺学[M]. 武汉: 武汉理工大学出版社, 2004: 17-20.
[2] 王桂林. 纳米粉体材料的制备[J]. 煤矿机械, 2003, (10): 66-67.
[3] 杨文达, 朱贵. 电火花放电腐蚀法制备超细金属粉体[J]. 装备制造技术, 2008, (7): 34-36.。