八年级数学下册 第17章 函数及其图象 17.1 变量与函数
- 格式:doc
- 大小:165.17 KB
- 文档页数:5
八年级数学第十七章反比例函数单元分析
本章内容属于“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题。
反比例函数是最基本的函数之一,是学习后续各类函数的基础。
本章的主要内容是反比例函数,教科书从几个学生熟悉的实际问题出发,引进反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识。
第17.1节的内容是反比例函数的概念、图象和性质。
反比例函数(k
为常数,)的图象分布在两个象限,当时,图象分布在一、三象限,y
随x的增大(减
小)而减小(增大);当时,图象分布在二、四象限,y随x的增大(减小)
而增大(减小)。
第17.2节的内容是如何利用反比例函数解决现实世界的实际问题,以及如何用反比例函数解释现实世界中的一些现象。
教学中要注重数学思想的渗透,注意做好与已学内容的衔接,还要加强反比例函数与正比例函数的对比。
本章的重点是反比例函数的概念、图象和性质,图象是直观地描述和研究函数的重要工具。
教材中给出了大量的具体的反比例函数的例子,用以加深学生对所学知识的理解和融会贯通。
本章的难点是对反比例函数及其图象和性质的理解和掌握,教学时在这方面要投入更多的精力。
课时分配
17.1 反比例函数
3课时
17.2 实际问题与反比例函数 4课时数学活动
小结
1课时
17.1反比例函数
17.2实际问题与反比例函数。
目录第16章分式§16.1 分式及其基本性质1. 分式2. 分式的基本性质§16.2 分式的运算1. 分式的乘除法2. 分式的加减法§16.3 可化为一元一次方程的分式方程§16.4 零指数幂与负整数指数幂1. 零指数幂与负整数指数幂2. 科学记数法小结与复习第17章函数及其图象§17.1 变量与函数§17.2 函数的图象1. 平面直角坐标系2. 函数的图象§17.3 一次函数1. 一次函数2. 一次函数的图象3. 一次函数的性质4. 求一次函数的表达式§17.4 反比例函数1. 反比例函数2. 反比例函数的图象和性质§17.5 实践与探索小结与复习第18章平行四边形§18.1 平行四边形的性质§18.2 平行四边形的判定第19章矩形、菱形与正方形§19.1 矩形1. 矩形的性质2. 矩形的判定§19.2 菱形1. 菱形的性质2. 菱形的判定§19.3 正方形小结与复习第20章数据的整理与初步处理§20.1 平均数1. 平均数的意义2. 用计算器求平均数3. 加权平均数§20.2 数据的集中趋势1. 中位数和众数2. 平均数、中位数和众数的选用§20.3 数据的离散程度1. 方差2. 用计算器求方差第16章 分式§16.1.1 分式教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式? (1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23.所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结: 什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
.精品文档.八年级第十七章《函数及其图象》知识点八年级第十七《函数及其图象》知识点(2)一、一次函数(一)一次函数的概念:形如y=kx+b (其中k工0),两个特征:①k工0,②x的次数为1正比例函数的概念:当b=0时的一次函数成为正比例函数,此时称y与x成正比例【注意】两个变量成正比例,即y=kx.例题1、若函数y=(-1)x|| 是一次函数,则=.2、若y-1与x+3成正比例,且当x=1时,y=2,求y与x 的函数关系式.(二)一次函数的图象及其性质:y=kx+b (" 0)1、一次函数的图象是一条直线,故使用待定系数法求直线解析式时一般需要两个点.特殊直线:直线y=x或直线y= -x上的点到两坐标轴距离相等.2、一次函数的性质(与系数k、b相关)① k决定着函数的增减性当k > 0时,y随x的增大而增大(增函数),必过第一三象限当k v 0时,y随x的增大而减小(减函数),必过第二四象限② b决定着直线与y轴交点的位置:在原点的基础上“上加下减”当b=0时,必过原点;当b>0时,沿y轴向上平移;当b v 0时,沿y轴向下平移.补充口诀:上加下减改变b, y=kx+b —y=kx+b+左加右减改变x, y=kx+b —y=k(x+)+b③斜率k的性质:平移k不变;|k|越大,直线的倾斜程度越大;k=【可用于待定系数法求解析式中的k 1④截距b的性质:与y轴交点(0, b),与x轴交点(, 0)⑤四种特殊位置关系的直线:两直线平行k相等;两直线相互垂直--> k1 • k2= -1 ;两直线关于x轴对称--> k与b均互为相反数;两直线关于y轴对称k互为相反数,b相等.⑥点(x0, y0)到直线ax+by+=0的距离d公式:d=(三)一次函数的应用1、解题关键:点的坐标,尤其是交点的坐标三种交点:①与x轴交点,y坐标为0,即(x, 0)②与y轴交点,x坐标为0,即(0, y)③两个图象的交点:联立解析式,方程组的解即为交点的x坐标和y坐标2、解题思路:①与三角形全等、直角三角形、面积、周长、线段有关的问题均转化为点的坐标【数形结合很重要,注意运用“全等(含对称)、勾股定理、等面积法(含同底等高)”等知识】②求函数解析式(含求函数值或自变量的值)均用待定系数法,其中k、b注意利用性质求得.【待定系数法思路:几个未知系数,就用几个条件构造方程】③比较大小的三种方法:【含两种方案的比较问题】代入计算法(对函数解析式已知的题目适用)增减性分析法(对k的符号已知的适用)图象分析法(对能画出大致图形的适用,借助交点和坐标轴分析)④最值问题(如最大利润):先求出自变量的取值范围(常以“有几种方案”的问题出现,需根据题意列不等式组求出);再列出关于利润的函数表达式(要化简整理成y=kx+b 的形式),最后根据增减性结合具体方案(自变量取值范围),找出最值.⑤行程问题(常以两车同向或相向为背景)图象交点的意义:两车相遇(或追上)两车的距离即为:s=y1-y2例题1、已知直线y=(k+2)x+k2-4 的图象经过原点,贝U k=.2、若一次函数y=(k+2)x-2k+3的图象不经过第四象限,则k的取值范围是.3、已知直线平行于直线y=2x,且与y轴交点到原点的距离为2,则该直线的解析式是.4、把直线y=-x+3向上平移个单位后,与直线y=2x+4的交点在第一象限,则的取值范围是.5、函数y=ax-2与y=bx+3的图象交于x轴上的一点,则=.6、一次函数y=(3a-7)x+a-2 的图象与y轴交点在x轴上方,且y随x的增大而减小,求a的取值范围.7、正比例函数y=-kx的图象经过第一三象限,在函数y=(k-2)x 的图象上有三个点(x1 , y1 )、(x2, y2)、(x3, y3), 且x1 >x2 > x3时,贝» y1、y2、y3的大小关系为.&若直线y=kx+b交坐标轴于(-2,0) 、(0,3)两点,则不等式kx+b > 0的解集是.9、函数y= -x+3,当图象在第一象限时,x的取值范围是;当-1 < x < 3时,函数的最小值是.10、直线AB过点A (0,6 )、B (-3,0 ),直线D与直线AB相互垂直,且过点(0,1 ).(1)求两直线的解析式;(2)求直线D与x轴的交点D 的坐标;(3)求直线AB上到y轴距离等于4的点的坐标;(4)求两直线的交点P的坐标;(5)求厶PAD的面积;(6)在y 轴上的是否存在点,使得S A PA=S^ PAD.11、点A为直线y=-2x+2上的点,点A到两坐标轴的距离相等,则点A的坐标为.12、把Rt △ AB放在平面直角坐标系中,点A (1,0 )、点B( 4,0 ), / AB=90°, B=5.将厶AB沿x轴向右平移,当点落在直线y=2x-6上时,求线段B扫过的面积.13、某工厂投入生产一种机器,当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x (单位:台)102030y (单位:万元/台)605550(1)求y与x之间的函数关系式,并写出自变量x的50取值范围;(2)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润. (注:利润=售价-成本)14、现从A, B两个蔬菜市场向甲、乙两地运送蔬菜,A, B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A地到甲地的运费为50元/吨,到乙地的运费为30元/吨;从B地到甲地的运费为60元/吨,到乙地的运费为45元/吨.(1) 设从A地往甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)AxB(2) 设总运费为元,请写出与x的函数关系式;(3) 共有多少种运送方案?哪种方案运费最少?15、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1 (k),出租车离甲地的距离为y2 ( k),客车行驶时间为x ( h), y1 , y2 与x 的函数关系图象如图所示:(1)根据图象,求出y1 , y2关于x的函数关系式。
第17章函数及其图象.............................................................. 错误!未定义书签。
§17.1变量与函数............................................................ 错误!未定义书签。
§17.2函数的图象............................................................ 错误!未定义书签。
1. 平面直角坐标系....................................................... 错误!未定义书签。
2.函数的图象.............................................................. 错误!未定义书签。
阅读材料............................................................................... 错误!未定义书签。
笛卡儿的故事............................................................... 错误!未定义书签。
§17.3 一次函数................................................................ 错误!未定义书签。
1. 一次函数................................................................... 错误!未定义书签。
2. 一次函数的图象....................................................... 错误!未定义书签。
第17章 函数及其图象单元大概念素养目标单元大概念素养目标对应新课标内容了解函数、变量、常量的意义,能确定实际问题中自变量的取值范围,会求函数值探索简单实例中的数量关系和变化规律,了解常量、变量的意义……能对变量的变化情况进行初步讨论【P57】了解一次函数、正比例函数的意义,会用待定系数法求一次函数的表达式,会画一次函数的图象,能判断图象的分布情况结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式……理解正比例函数【P57】能应用一次函数的图象与性质解决问题体会一次函数与二元一次方程的关系.能用一次函数解决简单实际问题【P57】了解反比例函数的意义,掌握反比例函数的图象和性质结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式……能用反比例函数解决简单实际问题【P57、P58】17.1 变量与函数基础过关全练知识点1 变量与常量1.(2022广东湛江中考)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r 的关系式为C=2πr.下列判断正确的是( )A.2是变量B.π是变量C.r是变量D.C是常量2.【跨学科·物理】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表(弹簧的弹性范围x≤10):x(kg)0246810y(cm)1010.51111.51212.5下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10 cmC.所挂物体质量为5 kg时,弹簧长度增加了1.25 cmD.所挂物体质量为9 kg时,弹簧长度增加到11.25 cm知识点2 函数3.(2023河南洛阳中成外国语学校月考)下列选项中,表示y是x的函数的是( )A B C D4.【函数思想】(2022河北石家庄晋州期中)一个蓄水池现储水100 m3,有两个进水口和一个放水口.现关闭所有进水口,打开放水口匀速放水,水池中的水量和放水时间的关系如下表所示,则下列说法不正确的是( )放水时间(min)1234…水池中水量(m3)95908580…A.放水时间是自变量,水池中的水量是放水时间的函数B.放水口每分钟放水5 m3C.放水20 min后,水池中的水全部放完D.放水8 min后,水池中还有40 m3的水5.【教材变式·P31T3(1)】圆的面积S与周长C之间的函数关系式为S= .6.【新独家原创】用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,若第●n个图案用的木棍根数是y,则y与n之间的函数关系式为 .知识点3 函数自变量的取值范围7.若等腰三角形的周长为50 cm,底边长为x cm,一腰长为y cm,则y与x之间的函数关系式及自变量x的取值范围是( )A.y=50-x(0<x<50)B.y=50-2x(0<x<25)(50-2x)(0<x<50)C.y=12D.y=1(50-x)(0<x<25)28.(2023吉林长春新解放学校月考)在函数y=3中,自变量x的取值范围是 .4x-39.【易错题】如图,某农户准备围成一个长方形养鸡场,养鸡场一边靠墙AB(AB=18米),另三边利用现有的36米长的篱笆围成,现要在与墙平行的一边开一扇2米宽的门,且篱笆没有剩余.(1)设边CD=x米,写出该长方形的面积S(平方米)与该边长x(米)之间的函数关系式;(2)求出x的取值范围.知识点4 函数值,当x=2时,y= .10.对于函数y=6xx+311.【新素材】(2023广东清远英德期中)在地球某地,地表以下岩层的温度y(℃)与所处深度x(km)之间的关系可以近似地用表达式y=35x+20来表示,当x的值为2时,对应的y值是 .12.【新独家原创】下图是一组有规律的图案,每个图案均由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,……(1)设第n个图案中有S个白色圆片,试写出S和n之间的函数关系式;(2)第100个图案中有多少个白色圆片?(3)是否存在一个图案,其中含有121个白色圆片?若存在,请求出是第几个图案;若不存在,请说明理由.能力提升全练13.(2023河北石家庄期中,2,★☆☆)某学校用100元买乒乓球,所购买的球的个数w,其中( )与单价n(元)之间的关系是w=100nA.100是常量,w,n是变量B.100,w是常量,n是变量C.100,n是常量,w是变量D.无法确定哪个是常量,哪个是变量14.(2023辽宁沈阳和平期末,6,★☆☆)小明一家自驾到离家500 km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是( )A.该车的油箱容量为45 LB.该车每行驶100 km耗油8 LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45-8xD.当小明一家到达景点时,油箱中剩余5 L油15.【跨学科·物理】(2023广东中考,13,★☆☆)某蓄电池的电压为48 V,电流I(单位:A).当R=12 Ω时,I的值为 A.与电阻R(单位:Ω)的函数表达式为I=48R16.【新考向·代数推理】(2021四川达州中考,12,★★☆)下图是一个运算程序示意图,若开始输入x的值为3,则输出y的值为 .17.(2023河南平顶山汝州期末,17,★★☆)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.为了测定某品牌小型载客汽车的刹车性能(车速不超过140 km/h),对该品牌该型号的汽车进行了测试,测得的数据如下表:刹车时车速010********…v(km/h)刹车距离s(m)0 2.557.51012.5…请回答下列问题:(1)在这个变化过程中,自变量是 ,因变量是 ;(2)当刹车时车速为60 km/h时,刹车距离是 m;(3)根据上表反映的规律写出该品牌该型号汽车s与v之间的关系式: ;(4)该品牌该型号汽车在高速公路上发生了一次交通事故,现场测得刹车距离为32 m,推测刹车时车速是多少,并说明事故发生时,汽车是超速行驶还是正常行驶.(相关法规规定:高速公路上行驶的小型载客汽车最高车速不得超过每小时120 km.)素养探究全练18.【模型观念】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,动点P从点A出发,以每秒2个单位长度的速度沿A→B→C移动到点C时停止,设移动的时间为x秒,△APC的面积为y,求y与x之间的函数关系式,并指出自变量x的取值范围.答案全解全析1.C 根据变量、常量的定义判断,r 是变量.2.D A.x 与y 都是变量,且x 是自变量,y 是因变量,故A 正确,不符合题意;B.弹簧不挂重物时的长度为10 cm,故B 正确,不符合题意;C.所挂物体质量为5 kg 时,弹簧长度增加了1.25 cm,故C 正确,不符合题意;D.所挂物体质量为9 kg 时,弹簧长度增加到12.25 cm,故D 错误,符合题意.故选D.3.C 选项C,图象描述了对于自变量x 取值范围内的每一个值,都有唯一的y 值与之对应,而选项A 、B 、D 中有一个x 值对应2个y 值的情况,故选项A 、B 、D 不符合题意,选项C 符合题意,故选C.4.D 设水池中水量为y m 3,放水时间为t min,则可得y=100-5t.A.放水时间是自变量,水池中的水量是放水时间的函数,故此选项正确,不符合题意;B.放水口每分钟放水95―902―1=5(m 3),故此选项正确,不符合题意;C.当t=20时,y=100-5×20=0,故放水20 min后,水池中的水全部放完,故此选项正确,不符合题意;D.当t=8时,y=100-5×8=60,故放水8 min 后,水池中还有60 m 3的水,故此选项错误,符合题意.故选D.5.答案 C 24π解析 设圆的半径是r,由2πr=C 可得r=C2π,所以S=π·r 2=π·C 24π2=C 24π.6.答案 y=5n+4解析 由题图可得,图案①有4+5=9根木棍;图案②有4+5×2=14根木棍;图案③有4+5×3=19根木棍;……依次类推,第n 个图案有(4+5n)根木棍,∴y=5n+4.7.D 依题意得y=12(50-x).∵x>0,50-x>0,且x<2y,即x<2×12(50-x),∴0<x<25.故选D.8.答案 x≠34解析 ∵4x-3≠0,∴自变量x 的取值范围是x≠34.9.解析 求x 的取值范围时,易忽略AB 的长导致解题错误.(1)∵CD=x 米,∴CF=(36+2-2x)=(38-2x)米,∴S=x(38-2x)=-2x 2+38x.(2)由题意得38―2x ≤18,38―2x >2,解得10≤x<18.∴x 的取值范围是10≤x<18.10.答案 125解析 将x=2代入得y=6×22+3=125.11.答案 90解析 当x=2时,y=35×2+20=90.12.解析 (1)第1个图案中有2×2=4个白色圆片;第2个图案中有2×3=6个白色圆片;第3个图案中有2×4=8个白色圆片;……第n 个图案中有2(n+1)个白色圆片.故S=2(n+1)=2n+2.(2)当n=100时,S=2×100+2=202.所以第100个图案中有202个白色圆片.(3)不存在,理由:当S=121时,2n+2=121,解得n=59.5,而n 是正整数,故n=59.5不符合题意,故不存在含有121个白色圆片的图案.能力提升全练13.A 由题意可知100是常量,w,n 是变量.故选A.14.C 当x=0时y=45,该车的油箱容量为45 L,选项A 正确,不符合题意;由表格数据可得该车每行驶100 km 耗油8 L,选项B 正确,不符合题意;由表格数据可得油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45-0.08x,选项C 错误,符合题意;45-0.08×500=5(L),即当小明一家到达景点时,油箱中剩余5 L 油,选项D 正确,不符合题意.故选C.15.答案 4解析 当R=12 Ω时,I=4812=4 A.16.答案 2解析 ∵3<4,∴把x=3代入y=|x|-1,得y=3-1=2.17.解析 (1)刹车时车速;刹车距离.(2)15.(3)由表格可知,刹车时车速每增加10 km/h,刹车距离增加2.5 m,∴s 与v 之间的关系式为s=0.25v(0≤v≤140).(4)当s=32时,32=0.25v,解得v=128,∵128>120,∴汽车超速行驶.答:刹车时车速是128 km/h,事故发生时,汽车是超速行驶.素养探究全练18.解析 在Rt △ABC 中,AC=3,BC=4,由勾股定理得AB=32+42=5,如图,过C 作CD ⊥AB 于D,由三角形的面积公式,可知12AB·CD=12AC·BC,即12×5CD=12×3×4,解得CD=125.点P 的移动有两种情况:(1)当点P 在AB 上移动时,AP=2x,所以y=12AP·CD=12·2x·125=125x,自变量x 的取值范围是0<x≤52;(2)当点P 在BC 上移动时,如图,PB=2x-5,则PC=BC-PB=4-(2x-5)=9-2x,所以y=12AC·CP=12×3×(9-2x)=272-3x,自变量x 的取值范围是52<x<92.综上所述,y 与x 之间的函数关系式为x 0<x ≤-3<x。
17.1.2 函数一.内容和内容解析【教学内容】《函数》是义务教育教科书华师大版八年级下册第十七章第一节第2课时,介绍函数的概念,是典型的概念课,引导学生从生活实例中抽象出函数概念,其中函数的概念是本节课核心内容.【教材分析】函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”.方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系.本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系.课本的引例较为丰富,但有些内容学生较为陌生,本设计只选取了其中较为简单的例子.考虑到初中列函数的解析式是一个难点,其本质是用含x的式子表示y,本节课中涉及的列函数解析式不是新的教学内容(将来学的待定系数法才是新的教学内容),也不是本节课能解决的问题,因此把设计的重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义.”【学情分析】学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.另一方面,学生在日常生活中也接触到函数图象、两个变量的关系等生活实例.在本节教学中,试图从学生较为熟悉的现实情景入手,引领学生认识变量和函数的存在和意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念.二.目标和目标解析【知识目标】(1)借助简单实例,初步理解变量与函数的关系,知道存在一类变量可以用函数方式来刻画.能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系.(3)借助简单实例,初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系.能判断两个变量间是否具有函数关系.【过程与方法目标】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.【情感与态度目标】(1)从学生熟悉、感兴趣的实例引入课题,学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.(2) 借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.【目标解析】函数的概念具有高度的抽象性.学生知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数.学生的生活经验中已具备一些朴素的函数关系的实例.学生初次接触两个变量之间的特殊对应关系,教师应根据学生的认知基础,创设丰富的现实情境,使学生在丰富的现实情境中感知变量和函数的存在和意义,认识常量与变量,理解具体实例中两个变量的特殊对应关系,初步理解函数的概念.【变量与函数概念的核心】两个变量间的特殊对应关系:(1)由哪一个变量确定另一个变量;(2)唯一对应关系.【教学重点】借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.【教学难点】怎样理解“唯一对应”.【教学关键】借助实例,明确由哪一个量的变化引起另一个量的变化,进而指出由哪一个变量确定另一个变量;“唯一对应”是一种特殊的对应关系,包括“一对一”、“多对一”.“一对多”不是函数关系.三、教学问题诊断分析【学生已有的知识结构】学生已学习了实数的加减、乘除、乘方与开方的运算,学习了列代数式及求代数式的值,会列一次方程(组)及解方程组,知道字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数.学生的生活经验中具有一些朴素的函数实例,依托学生熟悉的生活实例,引导学生认识抽象的函数的概念符合学生的认知规律.【学生学习的困难】学生对“唯一对应关系”的理解是一个难点,特别是没有实例背景的变量间的对应关系.应借助学生熟悉的简单实例明确研究函数的目的,理解变量间的特殊对应关系,初步理解函数的概念.函数关系的本质,是变量与变量之间的特殊对应关系(单值对应).如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,而x相对于y来说,比较容易研究,从而达到研究的目的.这也是一种化繁为简的转化思想.四、教学方法与教学手段学生的学法应以自主探究与合作交流为主.认识“唯一确定、唯一对应”的准确含义.教法采用师生互动探究式教学.函数概念具有高度的抽象性,借助学生熟悉的生活实例,引领学生经历从具体实例中抽象出常量、变量与函数的过程,初步理解抽象的函数概念.五、教学过程引言:其实,我们一直生活在一个充满变化的世界里,在我们身边到处都存在着在一个变化过程中一直变化着的量,要想更好地了解这个客观世界,就离不开研究这些量,今天我们就来研究两个量的关系,怎样由一个量来确定另一个量。
完整版)华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章分式16.1 分式及基本性质一、分式的概念1.分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子叫做分式。
2.对于分式概念的理解,应把握以下几点:1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;3)分母不能为零。
3.分式有意义、无意义的条件1)分式有意义的条件:分式的分母不等于 0;2)分式无意义的条件:分式的分母等于 0.4.分式的值为 0 的条件:当分式的分子等于 0,而分母不等于 0 时,分式的值为 0.即,使 A=0,B≠0 的条件是。
5.有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式单项式整式多项式分式ABAB单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示为:A·M/B=A·M/B·M/M=A·M·1/B·M,其中M(M≠0)为整式。
2.通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3.约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
变量与函数
(30分钟 50分)
一、选择题(每小题4分,共12分)
1.下列关于变量x 和y 的关系式:y=x ,2x 2
-y=0,y 2
=x ,2x-y 2
=0,其中y 是x 的函数的个数为( ) A.1 B.2 C.3 D.4 2.当x=0时,函数y=2x 2
+1的值是( ) A.1 B.0 C.3 D.-1
3.伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v 和时间t 的函数图象(不考虑图象端点情况)大致是(
)
二、填空题(每小题4分,共12分)
4.声音在空气中传播的速度y(m/s)与气温x(℃)之间有如下对应关系:y=错误!未找到引用源。
x+331.当气温为15℃时,声音传播速度为 .
5.某水果批发市场香蕉的价格如表:
若小强购买香蕉x 千克(x 大于40千克)付了y 元,则y 关于x 的函数关系式为 .(写出自变量的取值范围)
6.小明的父母出去散步,从家走了20min 到一个离家900m 的报亭,母亲随即按原速度返回家,父亲在报亭看了10min 报纸后,用15min 返回家,则表示父亲、母亲离家距离与时间之间的关系是 (只需填序号).
三、解答题(共26分)
7.(8分)已知一根长为20m的铁丝围成一个长方形,若宽为x,长为y:
(1)求出y关于x的函数关系式.
(2)写出自变量x的取值范围.
(3)求当x=4时所对应的函数值.
8.(8分)上山台阶的截面如图所示,除前两个台阶宽为4.3m外,其余每个台阶宽都为0.3m.
(1)求山脚至山顶的水平距离d(m)与台阶个数n(n≥2)之间的函数关系式(不要求写自变量取值范围).
(2)若从山脚到山顶的台阶总数为1200个,求山脚到山顶的水平距离d.
9.(10分)如图为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图.根据图象回答问题.
(1)图象表示了哪两个变量的关系.哪个是自变量?
(2)9时、10时30分、12时所走的路程分别是多少?
(3)他休息了多长时间?
(4)他从休息后直至到达目的地这段时间的平均速度是多少?
答案解析
1.【解析】选B.第一个和第二个,y值随x值的变化而变化,并且对于x的每个值,y都有唯一的值和它对应,所以y是x的函数,而第三个和第四个虽然y值随x值的变化而变化,但是当x取一个值时,y有不止一个值和它对应,所以y不是x的函数.所以共有2个函数关系.
2.【解析】选A.把x=0代入y=2x2+1,
得y=2×02+1=1.
【归纳整合】求自变量或函数值的方法
(1)当已知函数关系式时,求函数值就是求代数式的值;当已知函数关系式以及函数值时,求相应的自变量的值时就是解方程.
(2)当自变量确定时,函数值是唯一的.但当函数值确定时,对应的自变量可能不止一个.
3.【解析】选A.依题意,回家时,速度慢,时间长,返校时,速度快,时间短,故选A.
4.【解析】当气温为15℃时,y=错误!未找到引用源。
×15+331=9+331=340 m/s.
答案:340 m/s
5.【解析】因为x大于40千克,所以单价为6元,所以y=6x(x>40).
答案:y=6x(x>40)
6.【解析】因为小明的父母出去散步,从家走了20min到一个离家900m的报亭,母亲随即按原速返回,所以表示母亲离家的距离与时间之间的关系的图象是②;因为父亲看了10min报纸后,用了15min返回家,所以表示父亲离家的距离与时间之间的关系的图象是④.
答案:④②
7.【解析】(1)因为铁丝的长为20m,
所以2(x+y)=20,整理得,y=-x+10.
(2)0<x<10.
(3)当x=4时,y=-4+10=6.
8.【解析】(1)依题意得
d=4.3×2+0.3×(n-2),即d=0.3n+8.
(2)当n=1200时,d=0.3×1200+8=368(m),
所以山脚到山顶的水平距离是368m.
【高手支招】从实际问题抽象出数学模型,再利用数学知识解决实际问题,这种思想叫做数学建模思想,通过建模,利用各种平面图形的面积公式,立体图形的体积公式、利用各种不变的量及等量关系,抽象成数学问题,是解决此类问题的关键.
9.【解析】(1)表示了时间与路程的关系,时间是自变量.
(2)9时、10时30分、12时所走的路程分别是4km,9km,15km.
(3)因为从10时到10时30分,路程没有变化,但时间在增长,表示这段时间该旅行者在休息,所以他休息了30min.
(4)他从休息后直至到达目的地这段时间的平均速度是(15-9)÷(12-10.5)=4(km/h).。