高考数学大一轮复习 第四章 平面向量、数系的扩充与复数的引入教师用书 文
- 格式:doc
- 大小:1.26 MB
- 文档页数:53
第四节 数系的扩充与复数的引入[考纲传真] 1.理解复数的概念,理解复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.能进行复数代数形式的四则运算,了解两个具体复数相加、减的几何意义.1.复数的有关概念(1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位).(2)分类:(3)复数相等:a ⇔a =c ,b =d ((4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R).(5)复数的模:向量OZ →的模叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|a ,b ∈R ).2.复数的几何意义 复数z =a +b i复平面内的点Z (a ,b )平面向量OZ →=(a ,b ).3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.[常用结论]1.(1±i)2=±2i,1+i 1-i =i ,1-i 1+i =-i.2.-b +a i =i(a +b i). 3.i 4n=1,i4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N *);i 4n +i4n +1+i4n +2+i4n +3=0(n ∈N *).4.z ·z =|z |2=|z |2,|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪⎪⎪z 1z 2=|z 1||z 2|,|z n |=|z |n .[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i. ( )(2)复数中有相等复数的概念,因此复数可以比较大小. ( ) (3)实轴上的点表示实数,虚轴上的点都表示纯虚数. ( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )[答案] (1)× (2)× (3)×(4)√2.(教材改编)如图所示,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .DB [共轭复数对应的点关于实轴对称.]3.(教材改编)设m ∈R ,复数z =m 2-1+(m +1)i 表示纯虚数,则m 的值为( ) A .1 B .-1 C .±1D .0A [由题意得⎩⎪⎨⎪⎧m 2-1=0m +1≠0,解得m =1,故选A.]4.复数1+2i2-i=( )A .iB .1+iC .-iD .1-iA [1+2i 2-i=1++-+=5i5=i.] 5.(教材改编)设x ,y ∈R ,若(x +y )+(y -1)i =(2x +3y )+(2y +1)i ,则复数z =x +y i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限D [由题意知⎩⎪⎨⎪⎧x +y =2x +3y ,y -1=2y +1,解得⎩⎪⎨⎪⎧x =4,y =-2.则复数z =4-2i 在复平面上对应的点位于第四象限,故选D.]1.(2018·全国卷Ⅰ)设z =1+i+2i ,则|z |=( ) A .0 B.12C .1 D. 2 C [z =1-i1+i+2i =-2+-+2i =i ,所以|z |=1.]2.(2018·浙江高考)复数21-i (i 为虚数单位)的共轭复数是( )A .1+iB .1-iC .-1+iD .-1-iB [21-i=+-+=1+i ,所以复数21-i 的共轭复数为1-i ,故选B.]3.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________. -2 [∵a ∈R ,a -i2+i=a --+-=2a -1-a +5=2a -15-a +25i 为实数, ∴-a +25=0,∴a =-2.]复数的分类、所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a ,的形式,再根据题意列出实部、虚部满足的方程组即可求复数模的常规思路是利用复数的有关运算先求出复数,然后利用复数模的定义.►考法1 【例1】 (1)(2018·全国卷Ⅲ)(1+i)(2-i)=( ) A .-3-i B .-3+i C .3-iD .3+i(2)(2016·全国卷Ⅰ)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2C .2D .3(3)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0C .1D .2(1)D (2)A (3)B [(1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)(1+2i)(a +i)=a -2+(1+2a )i ,由题意知a -2=1+2a ,解得a =-3,故选A. (3)因为(2+a i)(a -2i)=-4i , 所以4a +(a 2-4)i =-4i.所以⎩⎪⎨⎪⎧4a =0,a 2-4=-4.解得a =0.故选B.]►考法2 复数的除法运算【例2】 (1)(2018·天津高考)i 是虚数单位,复数6+7i1+2i=________. (2)(2018·江苏高考)若复数z 满足i·z =1+2i ,其中i 是虚数单位,则z 的实部为________.(1)4-i (2)2 [(1)6+7i1+2i =+-+-=6+14+7i -12i 5=4-i.(2)z =1+2i i=+--=2-i故z 的实部为2.] ►考法3 复数的综合运算【例3】 (1)(2019·太原模拟)设复数z 满足1-z1+z =i ,则z 的共轭复数为( )A .iB .-iC .2iD .-2i(2)(2016·全国卷Ⅲ)若z =4+3i ,则z|z |=( ) A .1 B .-1 C.45+35i D.45-35i (3)若复数z 满足 2z +z =3-2i ,其中i 为虚数单位,则z 等于( ) A .1+2i B .1-2i C .-1+2iD .-1-2i(1)A (2)D (3)B [(1)由1-z1+z=i 得1-z =i +z i. 即(1+i)z =1-i ,则z =1-i1+i =-i ,因此z =i ,故选A.(2)∵z =4+3i ,∴z =4-3i ,|z |=42+32=5, ∴z|z |=4-3i 5=45-35i. (3)设z =a +b i(a ,b ∈R ),则z =a -b i ,所以2(a +b i)+(a -b i)=3-2i ,整理得3a+b i =3-2i ,所以⎩⎪⎨⎪⎧3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,所以z =1-2i ,故选B.]复数的乘法类同类项,不含复数的除法幂写成最简形式复数的运算与复数概念的综合题a ,的形式,再结合相关定义解答(1)(2019·合肥模拟)已知i 为虚数单位,则2-i=( )A .5B .5iC .-75-125iD .-75+125i(2)(2019·惠州模拟)已知复数z 的共轭复数为z ,若z (1-i)=2i(i 为虚数单位),则z =( )A .iB .i -1C .-i -1D .-i(3)(2019·南昌模拟)设z 的共轭复数是z ,若z +z =2,z 2=-2i ,则z =( ) A.12-12i B.12+12i C .1+iD .1-i(1)A (2)C (3)D [(1)法一:+-2-i=10-5i 2-i =5,故选A. 法二:+-2-i=+2-+-=+-5=5,故选A.(2)由已知可得z =2i1-i=+-+=-1+i ,则z =-1-i ,故选C.(3)对四个选项逐一验证可知,当z =1-i 时,符合题意,故选D.]【例4】 (1)(2018·北京高考)在复平面内,复数1-i 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)(2019·郑州模拟)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)(1)D (2)B [(1)11-i=1+i -+=1+i 2=12+12i ,所以11-i 的共轭复数为12-12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.(2)复数(1-i)(a +i)=a +1+(1-a )i ,其在复平面内对应的点(a +1,1-a )在第二象限,故⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1,故选B.]a ,b 一一对应(1)(2019·广州模拟)设z =1+i(i 是虚数单位),则复数z+z 2在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)在复平面内与复数z=5i1+2i所对应的点关于虚轴对称的点为A,则A对应的复数为( )A.1+2i B.1-2iC.-2+i D.2+i(1)A(2)C[(1)因为z=1+i,所以2z+z2=21+i+(1+i)2=-+-+1+2i+i2=-2+2i=1+i,所以该复数在复平面内对应的点的坐标为(1,1),位于第一象限,故选A.(2)依题意得,复数z=-+-=i(1-2i)=2+i,其对应的点的坐标是(2,1),因此点A(-2,1)对应的复数为-2+i.]1.(2017·全国卷Ⅰ)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)C[A项,i(1+i)2=i(1+2i+i2)=i×2i=-2,不是纯虚数.B项,i2(1-i)=-(1-i)=-1+i,不是纯虚数.C项,(1+i)2=1+2i+i2=2i,是纯虚数.D项,i(1+i)=i+i2=-1+i,不是纯虚数.故选C.]2.(2017·全国卷Ⅲ)复平面内表示复数z=i(-2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限C[∵z=i(-2+i)=-1-2i,∴复数z=-1-2i所对应的复平面内的点为Z(-1,-2),位于第三象限.故选C.]3.(2016·全国卷Ⅰ)设(1+i)x=1+y i,其中x,y是实数,则|x+y i|=( )A.1 B. 2 C. 3 D.2B[∵(1+i)x=1+y i,∴x+x i=1+y i.又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B.]4.(2015·全国卷Ⅰ)已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-iD .2+iC [∵(z -1)i =i +1,∴z -1=i +1i =1-i ,∴z =2-i ,故选C.]自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。
2018高考数学一轮复习第4章平面向量、数系的扩充与复数的引入重点强化训练2 平面向量教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第4章平面向量、数系的扩充与复数的引入重点强化训练2 平面向量教师用书文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第4章平面向量、数系的扩充与复数的引入重点强化训练2 平面向量教师用书文北师大版的全部内容。
重点强化训练(二) 平面向量A组基础达标(建议用时:30分钟)一、选择题1.(2017·石家庄模拟)已知a,b是两个非零向量,且|a+b|=|a|+|b|,则下列说法正确的是()A.a+b=0B.a=bC.a与b共线反向D.存在正实数λ,使a=λbD[因为a,b是两个非零向量,且|a+b|=|a|+|b|。
则a与b共线同向,故D正确.] 2.(2014·全国卷Ⅱ)设向量a,b满足|a+b|=10,|a-b|=错误!,则a·b=( )A.1 B.2C.3 D.5A[|a+b|2=(a+b)2=a2+2a·b+b2=10,|a-b|2=(a-b)2=a2-2a·b+b2=6,将上面两式左右两边分别相减,得4a·b=4,∴a·b=1。
]3.(2016·北京高考)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件D[若|a|=|b|成立,则以a,b为邻边的平行四边形为菱形.a+b,a-b表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a+b|=|a-b|不一定成立,从而不是充分条件;反之,若|a+b|=|a-b|成立,则以a,b为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而不是必要条件.故“|a|=|b|"是“|a+b|=|a-b|"的既不充分也不必要条件.]4.在平面直角坐标系中,已知O是坐标原点,A(3,0),B(0,3),C(cos α,sin α),若|错误!+错误!|=错误!,α∈(0,π),则错误!与错误!的夹角为( )【导学号:66482227】A.错误!B .错误!C .错误!πD .错误!πA [由题意,得错误!+错误!=(3+cos α,sin α),所以|错误!+错误!|=错误! =10+6cos α=13,即cos α=12, 因为α∈(0,π),所以α=错误!,C 错误!。
第1课时平面向量的线性运算与基本定理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量.规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 4.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 5.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则:a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0. 7.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)向量不能比较大小,但向量的模可以比较大小.(√)(2)向量与有向线段是一样的,因此可以用有向线段来表示向量.(×) (3)BA→=OA →-OB →.(√) (4)向量a -b 与b -a 是相反向量.(√) (5)若a ∥b ,b ∥c ,则a ∥c .(×)(6)向量AB→与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×)(7)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√) (8)同一向量在不同基底下的表示是相同的.(×)(9)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.(√)考点一 平面向量的概念例1] 给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )第四章 平面向量、数系的扩充与复数的引入大一轮复习 数学(理)A.②③ B .①②C .③④D .①④解析:①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB→=DC →,∴|AB →|=|DC →|且AB →∥DC →.又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB→∥DC →且|AB →|=|DC →|,因此,AB →=DC →. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③. 答案:A方法引航](1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(4)非零向量a与的关系:是a方向上的单位向量.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③λa=0(λ为实数),则λ必为零;④λ,μ为实数,若λa=μb,则a与b共线.其中错误命题的个数为()A.1 B.2C.3 D.4解析:①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a=0时,不论λ为何值,λa=0.④错误,当λ=μ=0时,λa=μb=0,此时,a与b可以是任意向量.故选C.答案:C考点二平面向量基本定理与线性运算例2](1)OD的中点,AE的延长线与CD交于点F,若AC→=a,BD→=b,则AF→等于()A.14a+12b B.23a+13bC.12a+14b D.13a+23b解析:如图,AF→=AD→+DF→,由题意知,DE∶BE=1∶3=DF∶AB,∴DF→=13AB →, ∴AF→=AD →+DF →=OD →+AO →+13AB →=12a +12b +13⎝ ⎛⎭⎪⎫12a -12b =23a +13b .答案:B(2)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.解析:在平行四边形中,有AC→=AB →+AD →,因E 、F 分别为CD 、BC 的中点,∴AE →=12(AC →+AD →),AF →=12(AB →+AC →),则AE →+AF →=12⎝⎛⎭⎫AD →+AB →+2AC →=32AC →,∴AC →=23AE →+23AF →,∴λ=μ=23,则λ+μ=43. 答案:43(3)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA→+bGB →+33cGC →=0,则A =________.解析:由G 为△ABC 的重心知GA→+GB →+GC →=0,则GC →=-GA →-GB →,因此aGA →+bGB →+33c (-GA →-GB →)=⎝ ⎛⎭⎪⎫a -33c GA →+⎝ ⎛⎭⎪⎫b -33c GB →=0,又GA→,GB →不共线,所以a -33c =b -33c =0,即a =b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6. 答案:π6方法引航] 用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.1.在本例(1)中已知条件不变,求DF →用a 和b 表示. 解:∵ABCD 为平行四边形,∴⎩⎨⎧a =AB→+AD →,b =AD →-AB →,∴AB→=12(a -b ). 由题意得DF→=13DC →=13AB →=16(a -b ).2.若将本例(2)改为:如图所示,在四边形ABCD 中,DC→=13AB →,E 为BC 的中点,且AE →=x ·AB →+y ·AD→,则3x -2y =________.解析:AC→=AD →+DC →=AD →+13AB →又E 为BC 的中点. ∴AE→=12(AB →+AC →)=12AD →+23AB →, 根据平面向量的基本定理,知y =12,x =23, 所以3x -2y =3×23-2×12=1. 答案:13.将本例(3)改为:若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________.解析:设AB 的中点为D ,由5 AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM →=2MD→.如图所示.故C ,M ,D 三点共线,且MD→=35CD →.所以△ABM 与△ABC 的面积之比为35.答案:35考点三 平面向量基本定理与坐标运算例3] (1)如图,在四边形ABCD 中,AB =BC =CD =1,且∠B =90°,∠BCD =135°,记向量AB→=a ,AC →=b ,则AD →=( )A.2a -⎝ ⎛⎭⎪⎫1+22b B .-2a +⎝ ⎛⎭⎪⎫1+22bC .-2a +⎝ ⎛⎭⎪⎫1-22b D.2a +⎝⎛⎭⎪⎫1-22b解析:根据题意可得△ABC 为等腰直角三角形,由∠BCD =135°,得∠ACD =135°-45°=90°,以B 为原点,AB 所在直线为x 轴,BC 所在直线为y 轴建立如图所示的平面直角坐标系,并作DE ⊥y 轴于点E ,则△CDE 也为等腰直角三角形,由CD =1,得CE =ED =22,则A (1,0),B (0,0),C (0,1),D ⎝ ⎛⎭⎪⎫22,1+22,∴AB→=(-1,0),AC →=(-1,1),AD →=⎝ ⎛⎭⎪⎫22-1,1+22,令AD →=λAB →+μAC →, 则有⎩⎪⎨⎪⎧-λ-μ=22-1μ=1+22,得⎩⎨⎧λ=-2μ=1+22,∴AD →=-2a +⎝ ⎛⎭⎪⎫1+22b .答案:B(2)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)解析:由a =(2,4)知2a =(4,8), 所以2a -b =(4,8)-(-1,1)=(5,7). 答案:A 错误!1.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35 C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 解析:选A.∵A (1,3),B (4,-1), ∴AB→=(3,-4),∴|AB →|=5, ∴与AB →同向的单位向量为AB →|AB→|=⎝⎛⎭⎪⎫35,-45.2.若向量a =(1,1),b =(1,-1),c =(-1,2)则c =( ) A .-12a +32b B.12a -32bC.32a -12b D .-32a +12b 解析:选B.设c =λ1a +λ2b ,则(-1,2)=λ1(1,1)+λ2(1,-1)=(λ1+λ2,λ1-λ2), ∴λ1+λ2=-1,λ1-λ2=2,解得λ1=12,λ2=-32, 所以c =12a -32b .考点四 向量共线问题例4] (1)( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)解析:由题意知,A 选项中e 1=0,C 、D 选项中两向量均共线,都不符合基底条件,故选B 事实上,a =(3,2)=2e 1+e 2. 答案:B(2)(2016·高考全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∴a =(m,4),b=(3,-2),a ∥b ,-2m -12=0,所以m =-6. 答案:-6(3)已知△ABC 的三个顶点A ,B ,C 及所在平面内一点P 满足P A →+PB →+PC →=AB →,则点P 与△ABC 的关系为( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在边AB 上D .P 在边AC 上解析:由P A →+PB →+PC →=AB →=PB →-P A →,得2P A →+PC →=0,∴CP →=2P A →,即CP →∥P A →,∴C 、P 、A 三点共线. 答案:D方法引航](1)两向量平行的充要条件,若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同.(2)三点共线的判断方法,判断三点是否共线,先求由三点组成的任意两个向量,然后再按两向量共线进行判定.1.若在本例(1)中,A ,B ,C ,D 的四组向量e 1+e 2与e 2同向的有哪些. 解:由题意可知A ,C ,D 中都是e 1∥e 2A 组e 1+e 2=(1,2)=e 2,C 组e 1+e 2=(3,5)+(6,10)=(9,15)=32(6,10),D 组e 1+e 2=0,故与e 2同向的有A ,C ,D.2.已知b =(3,-2)求使a ∥b ,且|a |=13时a 的值. 解:设a =λb =(3λ,-2λ) ∴|a |=9λ2+4λ2=13λ2=13,∴13|λ|=13,|λ|=13,∴λ=±13. ∴a =13(3,-2),或a =-13(3,-2)3.设OA→=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +2b 的最小值是( ) A .2 B .4 C .6 D .8解析:选D.AB→=OB →-OA →=(a ,-1)-(1,-2)=(a -1,1),AC→=OC →-OA →=(-b,0)-(1,-2)=(-b -1,2), ∵A ,B ,C 三点共线,∴AB →∥AC →,∴2(a -1)=-b -1,∴2a +b =1.∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=2+4a b +ba +2≥4+ 24a b ·b a =8,当且仅当4a b =b a 即2a =b =12时,取等号.思想方法]用函数与方程思想求解向量的线性运算典例] 给定两个长度为1的平面向量OA→和OB →,它们的夹角为2π3.如图所示,点C在以O 为圆心的圆弧上运动.若OC→=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.解] 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,设∠AOC =α⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤0,2π3,则C (cos α,sin α),由OC→=xOA →+yOB →,得⎩⎪⎨⎪⎧cos α=x -12ysin α=32y,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝ ⎛⎭⎪⎫α+π6,又α∈⎣⎢⎡⎦⎥⎤0,2π3,所以当α=π3时,x +y 取得最大值2.回顾反思] 根据向量相等,建立实数方程(组),把变量表示为函数求最值.高考真题体验]1.(2014·高考广东卷)已知向量a =(1,2),b =(3,1),则b -a =( )A .(-2,1)B .(2,-1)C .(2,0)D .(4,3)解析:选B.由于a =(1,2),b =(3,1),于是b -a =(3,1)-(1,2)=(2,-1),选B. 2.(2015·高考课标全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A.设C (x ,y ),∵A (0,1),AC→=(-4,-3), ∴⎩⎪⎨⎪⎧ x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,∴C (-4,-2),又B (3,2), ∴BC→=(-7,-4),选A. 3.(2015·高考课标全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD→=-13AB →+43AC → B.AD→=13AB →-43AC →C.AD→=43AB →+13AC →D.AD→=43AB →-13AC →解析:选A.由题意得AD→=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.4.(2016·高考北京卷)设a ,b 是向量.则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选D.取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b |,故由|a |=|b |推不出|a +b |=|a -b |.由|a +b |=|a -b |,得|a +b |2=|a -b |2,整理得a·b =0,所以a ⊥b ,不一定能得出|a |=|b |,故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D.5.(2015·高考课标全国Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12. 答案:126.(2015·高考北京卷)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC→,则x =________;y =________. 解析:由题中条件得MN→=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB→+yAC →,所以x =12,y =-16.答案:12 -16课时规范训练 A 组 基础演练1.设向量a =(2,4)与向量b =(x,6)共线,则实数x =( ) A .2 B .3 C .4 D .6解析:选B.∵a ∥b ,∴2×6-4x =0,解得x =3. 2.若向量BA→=(2,3),CA →=(4,7),则BC →等于( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)解析:选A.由于BA→=(2,3),CA →=(4,7),所以BC→=BA →+AC →=(2,3)+(-4,-7)=(-2,-4). 3.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC→等于( ) A .(-2,7) B .(-6,21) C .(2,-7) D .(6,-21)解析:选B.BC →=3PC →=3(2PQ →-P A →) =6PQ →-3P A →=(6,30)-(12,9) =(-6,21)4.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF→=( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD →解析:选D.在△CEF 中,EF→=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个三等分点,所以CF→=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D.5.已知向量a 、b 、c 中任意两个都不共线,并且a +b 与c 共线,b +c 与a 共线,那么a +b +c 等于( ) A .a B .b C .c D .0解析:选D.∵a +b 与c 共线,∴a +b =λ1c .① 又∵b +c 与a 共线,∴b +c =λ2a .② 由①得:b =λ1c -a .∴b +c =λ1c -a +c =(λ1+1)c -a =λ2a .∴⎩⎪⎨⎪⎧ λ1+1=0λ2=-1,即⎩⎪⎨⎪⎧λ1=-1λ2=-1, ∴a +b +c =-c +c =0.6.若a =(1,2),b =(-3,0),(2a +b )∥(a -m b ),则m =( ) A .-12B.12 C .2 D .-2解析:选A.∵a =(1,2),b =(-3,0), ∴2a +b =(-1,4),a -m b =(1+3m,2), 又∵(2a +b )∥(a -m b ),∴-1×2-4(1+3m )=0,∴m =-12.7.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23 C .x =14,y =34 D .x =34,y =14解析:选A.由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB→)=23OA →+13OB →,所以x =23,y =13. 8.若a ,b 为已知向量,且23(4a -3c )+3(5c -4b )=0,则c =________.解析:23(4a -3c )+3(5c -4b )=0,则83a -2c +15c -12b =0,∴13c =12b -83a ,∴c =1213b -839a .答案:1213b -839a9.设向量a ,b 不共线,且OC 1→=k 1a +k 2b ,OC 2→=h 1a +h 2b ,若OC 1→+OC 2→=m a +n b ,则实数m =________,n =________.解析:OC 1→+OC 2→=(k 1+h 1)a +(k 2+h 2)b =m a +n b ,由平面向量基本定理知m =k 1+h 1,n =k 2+h 2. 答案:k 1+h 1k 2+h 210.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3),又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12. 答案:12B 组 能力突破1.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 解析:选C.若a =(4,2),则|a |=25,且a ∥b 都成立; 因a ∥b ,设a =λb =(2λ,λ),由|a |=25,知 4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.2.已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,那么A 、B 、C 三点共线的充要条件为( ) A .λ+μ=2 B .λ-μ=1C .λμ=-1D .λμ=1解析:选D.∵A 、B 、C 三点共线, ∴存在实数t ,满足AB→=tAC →,即λa +b =t a +μt b ,又a ,b 是不共线的向量, ∴⎩⎪⎨⎪⎧λ=t 1=μt,∴λμ=1. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3 D .0解析:选D.∵CD→=23CB →=23(AB →-AC →)=23AB →-23AC →又CD→=rAB →+sAC →,∴r =23,s =-23, ∴r +s =0,故选D.4.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________. 解析:若点A ,B ,C 能构成三角形, 则向量AB→,AC →不共线.∵AB→=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠15.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向? 解:(1)因为a =(1,0),b =(2,1),所以a +3b =(7,3), 故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13. 此时k a -b =(k -2,-1)=⎝ ⎛⎭⎪⎫-73,-1,a +3b =(7,3),则a +3b =-3(k a -b ), 即此时向量a +3b 与k a -b 方向相反.第2课时 平面向量的数量积及应用1.平面向量的数量积 (1)向量的夹角①定义:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b的夹角.②范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.③共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直. (2)平面向量的数量积①定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a·b ,即a·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.②几何意义:数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a·a =x 21+y 21.(3)夹角:cos θ=a·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a·b =0⇔x 1x 2+y 1y 2=0.(5)|a·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a·b =b ·a (交换律).(2)λa·b =λ(a·b )=a·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律).4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)向量在另一个向量方向上的投影为数量,而不是向量.(√)(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.(√) (3)由a·b =0,可得a =0或b =0.(×)(4)两向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(×)(5)若a·b >0,则a 和b 的夹角为锐角;若a·b <0,则a 和b 的夹角为钝角.(×) (6)(a·b )·c =a·(b·c ).(×) (7)a·b =a·c (a ≠0),则b =c .(×)(8)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.(×) (9)因|e |=1,故a ·e =e ·a =1.(×)(10)在△ABC 中,AB→与BC →的夹角为内角B .(×)考点一平面向量数量积的运算例1] (1)在Rt △ABC 中,∠C =90°,AC =4,则AB ·AC 等于( )A .-16B .-8C .8D .16解析:法一:AB →·AC →=(CB →-CA →)·(-CA →)=-CB →·CA →+CA →2=16. 法二:∵AB →在AC →方向上的投影是AC ,∴AB →·AC→=|AC →|2=16.答案:D(2)(2017·河北石家庄质检)在矩形ABCD 中,AB =2,BC =1,E 为BC 的中点,若F 为该矩形内(含边界)任意一点,则AE →·AF→的最大值为________. 解析:以A 为坐标原点,AB 所在直线为x 轴,AD 所在的直线为y 轴建立如图所示的平面直角坐标系,则E ⎝ ⎛⎭⎪⎫2,12,设F (x ,y ),则⎩⎨⎧0≤x ≤20≤y ≤1,AE →·AF →=2x +12y , 令z =2x +12y ,当z =2x +12y 过点C (2,1)时,AE →·AF→取最大值92.答案:92方法引航] 根据平面向量的数量积的定义计算几何图形中的数量积a·b ,有以下几种思路:(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)第一,根据图形之间的关系,用模和相互之间的夹角都已知的向量分别表示出向量a ,b ;第二,根据平面向量的数量积的定义进行计算求解. (3)若有垂直条件,可建立直角坐标系,用坐标计算.1.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP→=-32,则λ等于( )A.12B.1±22C.1±102D.-3±222解析:选A.因为BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,且BQ →·CP →=-32,∴(1-λ)AC→-AB →](λAB →-AC →)=-32, ∴(1-λ)λAC →·AB →-λAB →2-(1-λ)AC →2+AB →·AC →=-32. ∴(λ-λ2)2×2cos 60°-4λ-4(1-λ)+2=-32△ABC 是等边三角形,所以得4λ2-4λ+1=0,解得λ=12,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC→的最大值为________. 解析:法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC→的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1,∴(DE →·DC →)max =|DC →|·1=1.答案:1 1考点二 平面向量的夹角与垂直问题例2] (1)(2016·=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°解析:由两向量的夹角公式,可得cos ∠ABC =BA →·BC →|BA →|·|BC →|=12×32+32×121×1=32,则∠ABC =30°. 答案:A(2)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________. 解析:由AP →⊥BC →知AP →·BC →=0, 即AP →·BC →=(λAB →+AC →)·(AC →-AB →) =(λ-1)AB →·AC→-λAB →2+AC →2 =(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-λ×9+4=0,解得λ=712.答案:712[方法引航] 求两非零向量的夹角时,要注意夹角的范围(1)若a ·b >0,则〈a ·b 〉为锐角或同向(0°).(2)若a ·b <0,则〈a ·b 〉为钝角或反向.(3)若a ·b =0,则〈a ·b 〉=90°.1.若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a -b 的夹角为( ) A.π6B.π3 C.5π6D.2π3解析:选D.由题意可做图如下,设AB →=b ,AD →=a ,结合向量的几何意义可知∠ABD=∠CAB =π6,故向量a +b 与a -b 的夹角为AC→与BD →的夹角23π.2.已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92B .0 C .3 D.152解析:选C.因为a =(k,3),b =(1,4),所以2a -3b =2(k,3)-3(1,4)=(2k -3,-6).因为(2a -3b )⊥c ,所以(2a -3b )·c =(2k -3,-6)·(2,1)=2(2k -3)-6=0,解得k =3.考点三 平面向量的模及其应用例3] (1)(2017·河北衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( )A .2B .6C .23D .12解析:|4a -b |2=16a 2+b 2-8a·b =16×1+4-8×1×2×cos π3=12. ∴|4a -b |=2 3. 答案:C(2)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是________.解析:设D (x ,y ),则(x -3)2+y 2=1,OA →+OB →+OD →=(x -1,y +3),故|OA →+OB →+OD→|=(x -1)2+(y +3)2,|OA→+OB →+OD →|的最大值即为圆(x -3)2+y 2=1上的点到点(1,-3)距离的最大值,其最大值为圆(x -3)2+y 2=1的圆心到点(1,-3)的距离加上圆的半径,即(3-1)2+(0+3)2+1=7+1,最小值为(3-1)2+(0+3)2-1=7-1,故取值范围为7-1,7+1]. 答案:7-1,7+1]方法引航] 利用数量积求解长度问题的处理方法 (1)a 2=a·a =|a |2或|a |=\r(a·a ).(2)|a ±b |=.(3)若|a |=r ,a =(x ,y )则x 2+y 2=r 2.1.已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 中点,则|AD →|等于() A .2B .4 C .6 D .8解析:选A.因为AD→=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b ·a +b 2)=4×⎝ ⎛⎭⎪⎫3-2×2×3×cos π6+4=4,则|AD→|=2.2.(2017·山西四校联考)已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq |的最小值为________.解析:p·q =(2,-1)·(x,2)=2x -2=0,从而x =1, ∴p +λq =(2,-1)+λ(1,2)=(2+λ,2λ-1),|p +λq |=(2+λ)2+(2λ-1)2=5λ2+5≥5,∴最小值为 5.答案: 5易错警示]数量积的正负与向量夹角关系不清典例] 已知a =(3,2),b =(2,-1),若向量λa +b 与a +λb 的夹角为锐角,则实数λ的取值范围是________.正解] 依题意,(λa +b )·(a +λb )=λa 2+λb 2+(λ2+1)a·b >0,即4λ2+18λ+4>0,由此解得λ>-9+654或λ<-9-654.注意到当λa +b 与a +λb 同向共线时,λ=1,(λa+b )·(a +λb )>0.因此,所求的实数λ的取值范围是λ>-9+654或λ<-9-654且λ≠1.答案]⎝ ⎛⎭⎪⎫-∞,-9-654∪⎝ ⎛⎭⎪⎫-9+654,1∪(1,+∞) 易误] 此题易忽略λ=1时,有λa +b 与a +λb 同向.警示] 向量数量积正负与向量夹角是钝角、锐角不等价,如:m·n >0时,其〈m ,n 〉可为锐角,也可为0,m·n <0,其〈m ,n 〉可为钝角,也可为π.此类题要考虑m 与n 共线情况.即:(1)向量a ,b 的夹角为锐角⇔a·b >0且向量a ,b 不共线. (2)向量a ,b 的夹角为钝角⇔a·b <0且向量a ,b 不共线.高考真题体验]1.(2016·高考全国甲卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8解析:选D.由向量的坐标运算得a +b =(4,m -2),由(a +b )⊥b ,得(a +b )·b =12-2(m -2)=0,解得m =8,故选D.2.(2015·高考课标全国卷Ⅱ)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2解析:选C.a =(1,-1),b =(-1,2),∴(2a +b )·a =(1,0)·(1,-1)=1.3.(2016·高考全国乙卷)设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.解析:由|a +b |2=|a |2+|b |2得a ⊥b ,则m +2=0,所以m =-2. 答案:-24.(2014·高考课标全国卷Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO→=12(AB →+AC →),则AB→与AC →的夹角为________. 解析:AO →=12(AB →+AC →),∴O 为BC 的中点,即BC 为直径,∴∠BAC =π2,∴〈AB →·AC→〉=π2. 答案:π25.(2013·高考课标全国卷Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.解析:以A 为原点,AB 为x 轴.AD 为y 轴,建立平面直角坐标系如图所示, 则A (0,0),B (2,0),D (0,2),E (1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=(1,2)·(-2,2)=-2+4=2. 答案:26.(2012·高考课标全国卷)已知向量a,b夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.解析:∵a,b的夹角为45°,|a|=1,∴a·b=|a|·|b|cos 45°=22|b|,|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=3 2.答案:32课时规范训练A组基础演练1.已知a,b为单位向量,其夹角为60°,则(2a-b)·b=()A.-1B.0C.1 D.2解析:选B.(2a-b)·b=2a·b-b2=2|a|·|b|·cos〈a,b〉-|b|2=2×1×1×cos 60°-1=0.2.已知向量a=(1,3),b=(3,m),若向量a,b的夹角为π6,则实数m=()A.23B. 3 C.0 D.- 3解析:选B.a·b=|a||b|cos π6,则3+3m=2·9+m2·32.(3+m)2=9+m2,解得m= 3.3.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=()A.5B.10C.25D.10解析:选B.∵a⊥b,∴a·b=0,即x-2=0,x=2,∴a+b=(3,-1),∴|a+b|=10.4.设向量a,b满足|a|=|b|=1,a·b=-12,则|a+2b|=()A.2B. 3C.5D.7解析:选B.|a +2b |2=a 2+4a·b +4b 2=1+4×⎝ ⎛⎭⎪⎫-12+4=3,∴|a +2b |= 3.5.已知向量a =(1,2),b =(x ,-4),若a ∥b ,则a·b 等于() A .-10 B .-6 C .0 D .6解析:选A.由a ∥b 得2x =-4,x =-2, 故a·b =(1,2)·(-2,-4)=-10.6.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a·b =________. 解析:由a =(-2,-6),得|a |=210,则a·b =|a ||b |cos 60°=210·10·12=10. 答案:107.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=________. 解析:∵m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )⊥(m -n ),∴(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=0, 从而λ=-3. 答案:-38.在△ABC 中,已知AB →·AC→=tan A ,当A =π6时,△ABC 的面积为________. 解析:已知A =π6,由题意得|AB→||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S=12|AB →||AC →|sin π6=12×23×12=16. 答案:169.已知向量a =(4,5cos α),b =(3,-4tan α),α∈⎝ ⎛⎭⎪⎫0,π2,a ⊥b ,求:(1)|a +b |; (2)cos ⎝ ⎛⎭⎪⎫α+π4的值.解:(1)因为a ⊥b ,所以a·b =4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈⎝ ⎛⎭⎪⎫0,π2, 所以cos α=45,tan α=sin αcos α=34, 所以a +b =(7,1), 因此|a +b |=72+12=5 2.(2)cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=45×22-35×22=210.10.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3),n =(cos 2B,2cos 2B2-1),且m ∥n . (1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.解:(1)m ∥n ⇒2sin B ·⎝ ⎛⎭⎪⎫2cos 2B 2-1+3cos 2B =0⇒sin 2B +3cos 2B =0⇒2sin ⎝ ⎛⎭⎪⎫2B +π3=0(B 为锐角) ⇒2B =2π3⇒B =π3.(2)cos B =a 2+c 2-b 22ac ⇒ac =a 2+c 2-4≥2ac -4⇒ac ≤4.S △ABC =12a ·c ·sin B ≤12×4×32= 3.B 组 能力突破1.已知△ABC 中,AB →·BC →+AB →2=0,则△ABC 的形状是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .直角三角形解析:选D.AB →·BC →+AB →2=0化为AB →·(BC →+AB →)=0,即AB →·AC →=0,所以AB →⊥AC →. 所以△ABC 为直角三角形. 又根据条件,不能得到|AB→|=|AC →|.2.已知△ABC 外接圆的半径为1,圆心为O .若|OA →|=|AB →|,且2OA →+AB →+AC →=0,则CA →·CB →等于( ) A.3B .2 3 C.32D .3解析:选D.因为2OA→+AB →+AC →=0,所以(OA →+AB →)+(OA →+AC →)=0,即OB →+OC →=0,所以O 为BC 的中点,故△ABC 为直角三角形,∠A 为直角,又|OA |=|AB |,则△OAB 为正三角形,|AC →|=3,|AB →|=1,CA →与CB →的夹角为30°,由数量积公式可知选D.3.△ABC 的外接圆圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB→方向上的投影为( ) A .1 B .2 C.3D .3解析:选C.如图,设D 为BC 的中点,由OA→+AB →+AC →=0,得AO→=2AD →, ∴A 、O 、D 共线且|AO→|=2|AD →|,又O 为△ABC 的外心,∴AO 为BC 的中垂线, ∴|AC→|=|AB →|=|OA →|=2,|AD →|=1, ∴|CD→|=3,∴CA →在CB →方向上的投影为 3. 4.已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是________. 解析:由a·b <0,即2λ-3<0,解得λ<32,由a ∥b 得: 6=-λ,即λ=-6.因此λ<32,且λ≠-6.答案:(-∞,-6)∪⎝ ⎛⎭⎪⎫-6,32 5.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a·b ,求f (x )的最大值. 解:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12 =sin ⎝ ⎛⎭⎪⎫2x -π6+12.当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1. 所以f (x )的最大值为32.第3课时 数系的扩充与复数的引入1.复数的有关概念 (1)复数的定义形如a +b i(a 、b ∈R )的数叫做复数,其中实部是a ,虚部是b . (2)复数的分类复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数(a =0,b ≠0),非纯虚数(a ≠0,b ≠0).(3)复数相等a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数a +b i 与c +d i 共轭⇔a =c 且b =-d (a ,b ,c ,d ∈R ). (5)复数的模向量OZ→的模叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|=r =a 2+b 2(r ≥0,a 、b ∈R ). 2.复数的几何意义 (1)复平面的概念建立直角坐标系来表示复数的平面叫做复平面. (2)实轴、虚轴在复平面内,x 轴叫做实轴,y 轴叫做虚轴,实轴上的点都表示实数;除原点以外,虚轴上的点都表示纯虚数. (3)复数的几何表示复数z =a +b i 复平面内的点Z (a ,b )平面向量OZ→.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1、z 2、z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). (3)复数乘法的运算定律复数的乘法满足交换律、结合律、分配律,即对于任意z 1,z 2,z 3∈C ,有z 1·z 2=z 2·z 1,(z 1·z 2)·z 3=z 1·(z 2·z 3),z 1(z 2+z 3)=z 1z 2+z 1z 3.4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)已知z =a +b i(a ,b ∈R ),当a =0时复数z 为纯虚数.(×) (2)复数z =a +b i(a ,b ∈R )中,虚部为b i.(×)(3)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)(4)若复数z 1,z 2满足z 1-z 2>0,则z 1>z 2.(×)(5)复数的减法不满足结合律,即(z 1-z 2)-z 3=z 1-(z 2+z 3)可能不成立.(×) (6)两个复数的积与商一定是虚数.(×)(7)复数加减乘除的混合运算法则是先乘除,后加减.(√) (8)复数z =3-2i 对应点的坐标为(3,-2i).(×) (9)AB→对应的复数就是点B 对应的复数.(×) (10)虚数可以构成等比数列且通项公式、前n 项的公式都适合.(√)考点一 复数的概念例1] (1)设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:若ab =0,则当a =1,b =0时,a +b i 是实数,不是纯虚数,若a +bi 是纯虚数,由a +b i =a -b i 知a =0,b ≠0,∴ab =0,因此“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件. 答案:B(2)(2016·高考全国甲卷)设复数z 满足z +i =3-i ,则z =( ) A .-1+2i B .1-2i C .3+2i D .3-2i解析:由z +i =3-i 得z =3-2i ,所以z =3+2i. 答案:C(3)(2016·高考全国乙卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2C.3D .2解析:因为(1+i)x =x +x i =1+y i , 又∵x ,y ∈R 所以x =y =1,|x +y i|=|1+i|=12+12=2,选B.答案:B方法引航] 有关复数的概念问题,一般涉及到复数的实部、虚部、模、虚数、纯虚数、实数、共轭复数等,解决时,一定先看复数是否为a +b i (a ,b ∈R )的形式,以确定其实部和虚部.1.本例(1)中“ab =0”是⎝ ⎛⎭⎪⎫a +b i 2为实数的什么条件?解:⎝ ⎛⎭⎪⎫a +b i 2=(a -b i)2=a 2-b 2-2ab i若ab =0,⎝ ⎛⎭⎪⎫a +b i 2为实数,反之成立.所以ab =0是⎝ ⎛⎭⎪⎫a +b i 2为实数的充要条件.2.若本例(2)改为设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i解析:选B.(z -2i)(2-i)=5,则z =52-i+2i =2+i +2i =2+3i.∴z =2-3i.3.本例(3)改为已知a ,b ∈R ,i 是虚数单位.若a +i =2-b i ,则|(a +b i)2|=________. 解析:由复数相等可得a =2,b =-1,则(2-i)2=3-4i. ∴|(a +b i)2|=|3-4i|=5. 答案:5考点二 复数的代数运算例2] (1)(2016·高考全国丙卷)若z =1+2i ,则4iz z -1=( )A .1B .-1C .iD .-i解析:4i z z -1=4i (1+2i )(1-2i )-1=i.答案:C(2)i 为虚数单位,⎝⎛⎭⎪⎫1-i 1+i 2=( ) A .1 B .-1 C .i D .-i解析:⎝ ⎛⎭⎪⎪⎫1-i 1+i 2=(1-i )2(1+i )2=-2i2i =-1. 答案:B(3)已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则(a +b i)·i 2的共轭复数是________.解析:∵(a +i)(1+i)=b i(a ,b ∈R ),∴(a -1)+(a +1)i =b i ,∴⎩⎪⎨⎪⎧a -1=0,a +1=b ,解得⎩⎪⎨⎪⎧a =1,b =2,∴(a +b i)·i 2=(1+2i)·(-1)=-1-2i. 因此(a +b i)·i 2的共轭复数为-1+2i. 答案:-1+2i(4)设i 是虚数单位,z 是复数z 的共轭复数,若z ·z i +2=2z ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i解析:设z =a +b i(a ,b ∈R ),由z ·z i +2=2z ,得(a +b i)(a -b i)i +2=2(a +b i),即(a 2+b 2)i +2=2a +2b i ,由复数相等的条件得⎩⎪⎨⎪⎧ a 2+b 2=2b ,2=2a ,得⎩⎪⎨⎪⎧a =1,b =1.∴z =1+i.答案:A方法引航](1)复数的加法、减法、乘法运算可以类比多项式运算,除法运算关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式. (2)记住以下结论,可提高运算速度,①(1±i )2=±2i ;②=i ;③=-i ;④=b -a i ;⑤i 4n =1,i 4n +1=i ,i 4n+2=-1,i 4n +3=-i (n ∈N ).1.若复数z =1+2i ,其中i 是虚数单位,则⎝ ⎛⎭⎪⎫z +1z ·z =________. 解析:∵z =1+2i ,∴z =1-2i , 所以⎝ ⎛⎭⎪⎫z +1z ·z =z ·z +1=5+1=6. 答案:62.若复数z 满足|z |-z i =3+i ,求z . 解:设z =a +b i(a ,b ∈R )∴a 2+b 2-(a +b i)·i =3+i∴⎩⎪⎨⎪⎧a 2+b 2+b =3,-a =1.∴a =-1,1+b 2=3-b ,∴1+b 2=9-6b +b 2,∴b =43∴z =-1+43i.考点三 复数的几何意义例3] (1)若a ,b ∈R ,i 是虚数单位,且a +(b -1)i =1+i ,则1+b ia i 对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限解析:由a +(b -1)i =1+i ,a ,b ∈R , 得a =1且b -1=1,所以a =1,且b =2. 因此1+b i a i =1+2i i =-i·(1+2i )(-i )·i =2-i.∴复数对应点(2,-1)在第四象限. 答案:D(2)在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA→对应的复数是( ) A .1-2i B .-1+2i C .3+4i D .-3-4i解析:因为CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.答案:D方法引航] 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.1.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是( ) A .E B .F C .G D .H解析:选D.由题图知复数z =3+i , ∴z1+i =3+i1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i.∴表示复数z1+i的点为H .2.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A .-5 B .5 C .-4+i D .-4-i解析:选A.∵z 1=2+i 在复平面内的对应点为(2,1),又z 1与z 2在复平面内的对应点关于虚轴对称,则z 2的对应点的坐标为(-2,1),即z 2=-2+i , ∴z 1z 2=(2+i)(-2+i)=i 2-4=-5.易错警示]复数代数运算的转化方法——实数化典例1] (2015·高考课标卷Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .2解析]∵(2+a i)(a -2i)=-4i , ∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4.解得a =0.故选B.答案] B典例2] (2015·高考江苏卷)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________.解析] 法一:z 2=3+4i =4+4i +i 2=(2+i)2, 所以z =2+i 或z =-2-i , 即|z |=22+1= 5.法二:令z =a +b i(a ,b ∈R ), z 2=(a +b i)2=a 2-b 2+2ab i =3+4i.。
第四章 平面向量、数系的扩充与复数的引入[深研高考·备考导航] 为教师备课、授课提供丰富教学资源[五年考情]从近五年浙江高考试题来看,平面向量与复数是每年的必考内容.主要考查平面向量的线性运算,平面向量共线与垂直的充要条件,平面向量的数量积及其应用复数的有关概念及复数代数形式的四则运算,多以客观题的形式出现,难度以容易题为主.第一节 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模). (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算平行四边形法则向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)a ∥b 是a =λb (λ∈R )的充要条件.( )(4)△ABC 中,D 是BC 的中点,则AD →=12(AC →+AB →).( )[答案] (1)× (2)× (3)× (4)√2.设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →A [AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →.故选A.]3.(2017·绍兴质检)设点P 是△ABC 所在平面内一点,且BC →+BA →=2BP →,则PC →+PA →=________.0 [因为BC →+BA →=2BP →,由平行四边形法则知,点P 为AC 的中点,故PC →+PA →=0.] 4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示).b -a -a -b [如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .]5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.【导学号:51062134】-13[由已知得a +λb =-k (b -3a ), ∴⎩⎪⎨⎪⎧λ=-k ,3k =1,得⎩⎪⎨⎪⎧λ=-13,k =13.]①若|a |=|b |,则a =b 或a =-b ; ②若AB →=DC →,则ABCD 为平行四边形;③若a 与b 同向,且|a |>|b |,则a >b ;④λ,μ为实数,若λa =μb ,则a 与b 共线; ⑤λa =0(λ为实数),则λ必为零;⑥a ,b 为非零向量,a =b 的充要条件是|a |=|b |且a ∥b . 其中假命题的序号为________.①②③④⑤⑥ [①不正确.|a |=|b |.但a ,b 的方向不确定,故a ,b 不一定是相等或相反向量;②不正确.因为AB →=DC →,A ,B ,C ,D 可能在同一直线上,所以ABCD 不一定是平行四边形.③不正确.两向量不能比较大小.④不正确.当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.⑤不正确.当λ=1,a =0时,λa =0.⑥不正确.对于非零向量a ,b ,a =b 的充要条件是|a |=|b |且a ,b 同向.] [规律方法] 1.(1)易忽视零向量这一特殊向量,误认为④是正确的;(2)充分利用反例进行否定是对向量的有关概念题进行判定的行之有效的方法.2.(1)相等向量具有传递性,非零向量平行也具有传递性.(2)共线向量(平行向量)和相等向量均与向量的起点无关.3.若a 为非零向量,则a |a |是与a 同向的单位向量,-a|a |是与a 反向的单位向量.[变式训练1] 设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是 ( )A .0B .1C .2D .3D [向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.](1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC →=( ) A.BC →B.12AD →C.AD →D.12BC →(2)(2017·杭州二中模拟)在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( )A .-3B .-13C.13D .3(1)C (2)A [(1)如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. (2)如图,过D 作DE ∥AB ,CD →=mBA →+nBC →=CE →+ED →=-13BC →+BA →,所以n =-13,m =1,所以mn =-3.故选A.][规律方法] 向量的线性运算的求解方法(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[变式训练2] (1)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM → B .2OM → C .3OM →D .4OM →(2)已知D 为三角形ABC 边BC 的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.(1)D (2)-2 [(1)因为M 是AC 和BD 的中点,由平行四边形法则,得OA →+OC →=2OM →,OB →+OD →=2OM →,所以OA →+OB →+OC →+OD →=4OM →.故选D.(2)因为D 是BC 的中点,则AB →+AC →=2AD →. 由PA →+BP →+CP →=0,得BA →=PC →. 又AP →=λPD →,所以点P 是以AB ,AC 为邻边的平行四边形的第四个顶点,因此AP →=AB →+AC →=2AD →=-2PD →,所以λ=-2.](1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. 【导学号:51062135】 [解] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),2分 ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线,又∵它们有公共点B , ∴A ,B ,D 三点共线.6分 (2)∵k a +b 和a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b ,∴(k -λ)a =(λk -1)b .10分 ∵a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.14分 [规律方法] 共线向量定理的应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB →=λAC →,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.易错警示:证明三点共线时,需说明共线的两向量有公共点.[变式训练3] (1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线(2)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. (1)B (2)12 [(1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →,∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =t a +2t b ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.][思想与方法]1.向量加法的三角形法则应注意“首尾相接,指向终点”;向量减法的三角形法则应注意“起点重合,指向被减向量”;平行四边形法则应注意“起点重合”.2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.[易错与防范]1.解决向量的概念问题要注意两点:一是向量的大小与方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.3.在向量共线的条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.课时分层训练(二十二) 平面向量的概念及线性运算A 组 基础达标 (建议用时:30分钟)一、选择题1.在△ABC 中,已知M 是BC 中点,设CB →=a ,CA →=b ,则AM →=( ) A.12a -b B.12a +b C .a -12bD .a +12bA [AM →=AC →+CM →=-CA →+12CB →=-b +12a ,故选A.]2.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,DD .A ,C ,DB [因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A , 所以A ,B ,D 三点共线.]3.在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13 C .-13D .-23A [∵AD →=2DB →,即CD →-CA →=2(CB →-CD →),∴CD →=13CA →+23CB →,∴λ=23.]4.设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )【导学号:51062136】A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |C [a |a |=b |b |⇔a =|a |b |b |⇔a 与b 共线且同向⇔a =λb 且λ>0.B ,D 选项中a 和b 可能反向.A 选项中λ<0,不符合λ>0.]5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直A [由题意得AD →=AB →+BD →=AB →+13BC →,BE →=BA →+AE →=BA →+13AC →, CF →=CB →+BF →=CB →+13BA →,因此AD →+BE →+CF →=CB →+13(BC →+AC →-AB →)=CB →+23BC →=-13BC →,故AD →+BE →+CF →与BC →反向平行.] 二、填空题6.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB→+OD →,则四边形ABCD 的形状为________.【导学号:51062137】平行四边形 [由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →, 所以BA →=CD →,所以四边形ABCD 为平行四边形.]7.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)52e 1+32e 2 [在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).]8.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.12 -16 [∵AM →=2MC →,∴AM →=23AC →. ∵BN →=NC →,∴AN →=12(AB →+AC →),∴MN =AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →. 又MN →=xAB →+yAC →,∴x =12,y =-16.]三、解答题9.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →. 【导学号:51062138】图411[解] AD →=12(AB →+AC →)=12a +12b .4分AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →) =13AB →+13AC → =13a +13b .14分 10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2, 求证:A ,C ,D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A ,C ,D 三点共线,求k 的值.[解] (1)证明:∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →, ∴AC →与CD →共线.4分又∵AC →与CD →有公共点C ,∴A ,C ,D 三点共线.7分(2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2.9分∵A ,C ,D 三点共线,∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →,12分即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧ 3=2λ,-2=-λk ,解得⎩⎪⎨⎪⎧ λ=32,k =43.15分B 组 能力提升(建议用时:15分钟)1.设M 是△ABC 所在平面上的一点,且MB →+32MA →+32MC →=0,D 是AC 的中点,则|MD →||BM →|的值为 ( )A.13B.12 C .1 D .2A [∵D 是AC 的中点,延长MD 至E ,使得DE =MD (图略),∴四边形MAEC 为平行四边形,∴MD →=12ME →=12(MA →+MC →).∵MB →+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A.] 2.(2017·浙江嘉兴高三双基测试)如图412,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH 的中点.若AM →=λAB →+μBC →,则λ+μ=________. 【导学号:51062139】图41223[因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1. 因为点M 为AH 的中点,所以AM →=12AH →=12(AB →+BH →)=12⎝ ⎛⎭⎪⎫AB →+13BC →=12AB →+16BC →,又AM →=λAB →+μBC →,所以λ=12,μ=16,所以λ+μ=23.] 3.已知a ,b 不共线,OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b=d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.[解] 由题设知,CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b ,3分整理得(t -3+3k )a =(2k -t )b .7分因为a ,b 不共线,所以有⎩⎪⎨⎪⎧ t -3+3k =0,t -2k =0,13分解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.15分。
第四节 数系的扩充与复数的引入☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.复数的有关概念(1)复数的概念:+a ,则0=b 。
若虚部和实部分别是它的b ,a 的数叫做复数,其中)R ∈b ,a i(b +a 形如为纯虚数。
i b +a ,则≠0b ,且0=a 为虚数;若i b +a ,则≠0b 为实数;若i b。
)R ∈d ,c ,b ,a (d =b 且c =a ⇔i d +c =i b +a 复数相等:(2) 。
)R ∈d ,c ,b ,a (d =-b ,c =a ⇔共轭id +c 与i b +a 共轭复数:(3)轴除去原y 叫做实轴,轴x 复平面:建立直角坐标系来表示复数的平面,叫做复平面。
(4);各象限内的点都纯虚数;除原点外,虚轴上的点都表示实数叫做虚轴。
实轴上的点都表示点。
非纯虚数表示|z |,即i|b +a |或|z |的模,记作)R ∈b ,a i(b +a =z 叫做复数r 的模OZ →复数的模:向量(5)=|a +b i| 2.复数的几何意义(1)复数z =a +b i ――――――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。
)R ∈b ,a (OZ →平面向量――――――→一一对应 i b +a =z 复数(2)3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则:;)i d +b (+)c +a (=i)d +c (+i)b +a (=2z +1z 加法:① ;)i d -b (+)c -a (=i)d +c (-i)b +a (=2z -1z 减法:② ;)i bc +ad (+)bd -ac (=i)d +c i)·(b +a (=2z ·1z 乘法:③ ④除法:z1z2=a +bic +di=++-c2+d2(c +d i≠0)。
(2)复数加法的运算定律+)2z +1z (,1z +2z =2z +1z ,有C ∈3z ,2z ,1z 复数的加法满足交换律、结合律,即对任何。
学习资料第四节数系的扩充与复数的引入授课提示:对应学生用书第85页[基础梳理]1.复数的有关概念内容意义备注复数的概念设a,b都是实数,形如a+b i的数叫复数,其中实部为a,虚部为b,i叫做虚数单位a+b i为实数⇔b=0,a+b i为虚数⇔b≠0,a+b i为纯虚数⇔a=0且b≠0复数相等a+b i=c+d i⇔a=c且b=d(a,b,c,d∈R)共轭复数a+b i与c+d i共轭⇔a=c且b=-d(a,b,c,d∈R)复数a(a为实数)的共轭复数是a复平面建立平面直角坐标系来表示复数的平面,叫作复平面,x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数复数的模向量错误!的模叫作复数z=a+b i的模,记作|z||z|=|a+b i|=a2+b2复数z=a+b i(a,b∈R)错误!复平面内的点Z(a,b)错误!向量错误!。
3.复数代数形式的四则运算(1)运算法则:1=a+b i,z2=c+d i(a,b,c,d∈R),则运算名称符号表示语言叙述加减法z1±z2=(a+b i)±(c+d i)=(a±c)+(b±d)i把实部、虚部分别相加减乘法z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i按照多项式乘法进行,并把i2换成-1除法错误!=错误!=错误!=错误!+bc-adc2+d2i(c+d i≠0)把分子、分母分别乘以分母的共轭复数,然后分子、分母分别进行乘法运算(2)复数加法的运算律:设z1,z2,z3∈C,则复数加法满足以下运算律:①交换律:z1+z2=z2+z1;②结合律:(z1+z2)+z3=z1+(z2+z3).1.复数a+b i(a,b∈R)数系表错误!错误!2.复数不能比较大小3.几个重要运算结论(1)(1±i)2=±2i;错误!=i;错误!=-i.(2)-b+a i=i(a+b i).(3)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N+).(4)i4n+i4n+1+i4n+2+i4n+3=0(n∈N+).[四基自测]1.(基础点:复数的几何意义)设z=-3+2i,则在复平面内错误!对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限答案:C2.(基础点:复数的乘除法运算)复数错误!错误!的共轭复数是()A.2-i B.2+iC.3-4i D.3+4i答案:C3.(易错点:纯虚数)若复数z=错误!+1为纯虚数,则实数a=()A.-2 B.-1C.1 D.2答案:A4.(基础点:复数的模)复数z=错误!,其中i为虚数单位,则|z|=________.答案: 2授课提示:对应学生用书第86页考点一复数的概念挖掘1复数的认识/ 自主练透[例1](1)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.-3B.-2C.2 D.3[解析](1+2i)(a+i)=a-2+(1+2a)i,由题设知a-2=1+2a,解得a=-3,故选A. [答案] A(2)已知i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.[解析]由(1-2i)·(a+i)=a+i-2a i+2=a+2+(1-2a)i,且(1-2i)·(a+i)为纯虚数,可得:a+2=0且1-2a≠0,所以a=-2。
第四章⎪⎪⎪ 平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算1.向量的有关概念三角形法平行四边三角向量a (a≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b,则a =b B .若|a |=|b |,则a =b C .若|a |=|b |,则a ∥b D .若a =b ,则|a |=|b |答案:D2.(教材习题改编)化简:(1)( AB ―→+MB ―→)+BO ―→+OM ―→=________. (2) NQ ―→+QP ―→+MN ―→-MP ―→=________. 答案:(1)AB ―→(2)03.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系.[小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2.答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的________条件.解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念基础送分型考点——自主练透[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.2.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点(1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0.(5)相等相量:方向相同且长度相等.如“题组练透”第2题易混淆有关概念. 考点二 向量的线性运算基础送分型考点——自主练透[题组练透]1.(2017·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2017·唐山统考)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A .12AB ―→+12AD ―→ B .34AB ―→+12AD ―→C .34AB ―→+14AD ―→ D .12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝ ⎛⎭⎪⎫AB ―→+AD ―→+12 AB ―→ =34AB ―→+12AD ―→.3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ―→=λ1AB ―→+λ2AC ―→(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE ―→=DB ―→+BE ―→=12AB ―→+23BC ―→=12AB ―→+23(BA ―→+AC ―→)=-16AB ―→+23AC ―→,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:12[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用重点保分型考点——师生共研[典例引领]设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使ka +b 和a +kb 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→. ∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵ka +b 与a +kb 同向,∴存在实数λ(λ>0),使ka +b =λ(a +kb ), 即ka +b =λa +λkb .∴(k -λ)a =(λk -1)b . ∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法] 共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,若AB ―→+AD ―→=λAO ―→,则λ=( ) A .1 B .2 C .4D .6解析:选B 根据向量加法的运算法则可知,AB ―→+AD ―→=AC ―→=2AO ―→,故λ=2. 2.在△ABC 中,AD ―→=2DC ―→,BA ―→=a ,BD ―→=b ,BC ―→=c ,则下列等式成立的是( ) A .c =2b -a B .c =2a -b C .c =32a -12bD .c =32b -12a解析:选D 依题意得BD ―→-BA ―→=2(BC ―→-BD ―→), 即BC ―→=32BD ―→-12BA ―→=32b -12a .3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2017·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13.答案:135.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b .答案:b -a -a -b二保高考,全练题型做到高考达标1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB ―→=a ,AD ―→=b, 则BE ―→等于( )A .12b -a B .12a -b C .-12a +bD .12b +a 解析:选C BE ―→=BA ―→+AD ―→+12DC ―→=-a +b +12a =b -12a ,故选C .2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =kd (k <0),于是λa +b =k []a +λ-b .整理得λa +b =ka +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.下列四个结论:①AB ―→+BC ―→+CA ―→=0;②AB ―→+MB ―→+BO ―→+OM ―→=0;③AB ―→-AC ―→+BD ―→-CD ―→=0;④NQ ―→+QP ―→+MN ―→-MP ―→=0,其中一定正确的结论个数是( ) A .1 B .2 C .3D .4解析:选C ①AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=0,①正确;②AB ―→+MB ―→+BO ―→+OM ―→=AB ―→+MO ―→+OM ―→=AB ―→,②错;③AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BD ―→+DC ―→=CB ―→+BC ―→=0,③正确;④NQ ―→+QP ―→+MN ―→-MP ―→=NP ―→+PN ―→=0,④正确.故①③④正确.4.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.5.设O 在△ABC 的内部,D 为AB 的中点,且OA ―→+OB ―→+2OC ―→=0,则△ABC 的面积与△AOC 的面积的比值为( )A .3B .4C .5D .6解析:选B ∵D 为AB 的中点,则OD ―→=12(OA ―→+OB ―→),又OA ―→+OB ―→+2OC ―→=0,∴OD ―→=-OC ―→,∴O 为CD 的中点, 又∵D 为AB 中点, ∴S △AOC =12S △ADC =14S △ABC ,则S △ABCS △AOC=4. 6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).解析:由AN ―→=3NC ―→,得AN ―→=34AC ―→=34(a +b ),AM ―→=a +12b ,所以MN ―→=AN ―→-AM ―→=34(a +b )-⎝ ⎛⎭⎪⎫a +12b =-14a +14b .答案:-14a +14b7.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0.其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b )=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB ―→=a ,AC ―→=b ,试用a ,b 表示AD ―→,AG ―→.解:AD ―→=12(AB ―→+AC ―→)=12a +12b .AG ―→=AB ―→+BG ―→=AB ―→+23BE ―→=AB ―→+13(BA ―→+BC ―→)=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→ =13a +13b . 10.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-ke 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-ke 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R), 即3e 1-ke 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.三上台阶,自主选做志在冲刺名校1.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE ―→=AD ―→+μAB ―→,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB ―→=2DC ―→. ∵点E 在线段CD 上, ∴DE ―→=λDC ―→(0≤λ≤1). ∵AE ―→=AD ―→+DE ―→,又AE ―→=AD ―→+μAB ―→=AD ―→+2μDC ―→=AD ―→+2μλDE ―→,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.即μ的取值范围是⎣⎢⎡⎦⎥⎤0,12. 答案:⎣⎢⎡⎦⎥⎤0,12 2.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1, 则OP ―→=m OA ―→+(1-m )OB ―→ =OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B , ∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0. ∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______. 答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -131.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:02.(2015·江苏高考)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3.答案:-3考点一 平面向量基本定理及其应用基础送分型考点——自主练透[题组练透]1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB ―→=a ,AC ―→=b ,则AO ―→=( )A .12a +12b B .12a +13b C .14a +12b D .12a +14b 解析:选D ∵在三角形ABC 中,BE 是AC 边上的中线,∴AE ―→=12AC ―→.∵O 是BE 边的中点,∴AO ―→=12(AB ―→+AE ―→)=12AB ―→+14AC ―→=12a +14b .2.(易错题)如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.解:∵BA ―→=OA ―→-OB ―→=a -b , BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理,如“题组练透”第2题.考点二 平面向量的坐标运算基础送分型考点——自主练透[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4)B .(3,4)C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A .2.已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2)D .(-2,0)解析:选A MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6), 所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法] 平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示重点保分型考点——师生共研[典例引领]已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +mb ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴ka -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵ka -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线, ∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0, ∴m =32.[由题悟法] 向量共线的充要条件(1)a ∥b ⇔a =λb (b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B .43C .12D .13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线,∴AB ―→,AC ―→共线, ∴-2×(4-k )=-7×(-2k ), 解得k =-23.2.(2017·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________.解析:因为m +n =(2λ+3,3),m -n =(-1,-1),又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0.答案:0一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选 B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→, ∴3(m +3)-6(m +1)=0, ∴m =1.故选A .3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=________.解析:因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得cos 2θ=12,所以cosθ=±22,又∵θ为锐角,∴θ=π4. 答案:π45.在△ABC 中,点P 在BC 上,且BP ―→=2PC ―→,点Q 是AC 的中点,若 PA ―→=(4,3),PQ ―→=(1,5),则BC ―→=________.解析:AQ ―→―→=PQ ―→-PA ―→=(-3,2), ∴AC ―→=2AQ ―→=(-6,4). PC ―→=PA ―→+AC ―→=(-2,7), ∴BC ―→=3PC ―→=(-6,21). 答案:(-6,21)二保高考,全练题型做到高考达标1.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).2.已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D 由题意可得c 与d 共线,则存在实数λ,使得c =λd ,即⎩⎪⎨⎪⎧k =λ,1=-λ,解得k =-1.c =-a +b =-(a -b )=-d ,故c 与d 反向.3.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D ∵a -12b =(3,1),∴a -(3,1)=12b ,则b =(-4,2).∴2a +b =(-2,6).又(2a +b )∥c ,∴-6=6x ,x =-1.故选D .4.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ的值为( )A .23B .-23C .32D .-32解析:选B 设P (x ,y ),则由AP ―→=AB ―→+λAC ―→,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),∴x =5λ+4,y =7λ+5.又点P 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.故选B .5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A .14a +12bB .12a +14b C .23a +13b D .13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b ,∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎢⎡⎦⎥⎤-12BD ―→-⎝ ⎛⎭⎪⎫-12AC ―→ =16AC ―→-16BD ―→=16a -16b , ∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C .6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量ka +b 共线,则实数k =________.解析:ka +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量ka +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.答案:-17.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则λμ=________.解析:以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO ―→=(-1,1),b =OB ―→=(6,2),c =BC ―→=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 即-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.答案:49.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =mb +nc 的实数m ,n ; (2)若(a +kc )∥(2b -a ),求实数k . 解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎪⎨⎪⎧m =59,n =89.(2)a +kc =(3+4k,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD ―→=CF ―→+FD ―→=-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b .三上台阶,自主选做志在冲刺名校1.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.设OP ―→=x OA ―→,OQ ―→=y OB ―→,则1x +1y=________.解析:∵点P ,G ,Q 在一条直线上,∴PG ―→=λPQ ―→. ∴OG ―→=OP ―→+PG ―→=OP ―→+λPQ ―→=OP ―→+λ(OQ ―→-OP ―→) =(1-λ)OP ―→+λOQ ―→=(1-λ)x OA ―→+λy OB ―→,① 又∵G 是△OAB 的重心, ∴OG ―→=23OM ―→=23×12(OA ―→+OB ―→)=13OA ―→+13OB ―→.② 而OA ―→,OB ―→不共线,∴由①②,得⎩⎪⎨⎪⎧-λx =13,λy =13.解得⎩⎪⎨⎪⎧1x =3-3λ,1y =3λ.∴1x +1y=3.答案:32.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2.故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→, 所以-a (2-b )-2b =0,即2(a +b )=ab ,因为a >0,b >0, 所以2(a +b )=ab ≤⎝⎛⎭⎪⎫a +b 22,即(a +b )2-8(a +b )≥0, 解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角(1)a·b =b·a .(2)(λa )·b =λ(a·b )=a·(λb ).(3)(a +b )·c =a·c +b·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.|x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22[小题体验]1.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( ) A .π6 B .π3 C .2π3 D .5π6答案:D2.已知|a |=5,|b |=4,a 与b 的夹角为120°,则a ·b =_____. 答案:-103.(2016·山东高考)已知向量a =(1,-1),b =(6,-4).若a ⊥(ta +b ),则实数t 的值为________.解析:∵a =(1,-1),b =(6,-4), ∴ta +b =(t +6,-t -4). 又a ⊥(ta +b ),则a ·(ta +b )=0, 即t +6+t +4=0,解得t =-5. 答案:-51.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.3.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 4.在用|a |=a 2求向量的模时,一定要把求出的a 2再进行开方.[小题纠偏]1.给出下列说法:①向量b 在向量a 方向上的投影是向量;②若a ·b >0,则a 和b 的夹角为锐角,若a ·b <0,则a 和b 的夹角为钝角; ③(a ·b )c =a (b ·c );④若a ·b =0,则a =0或b =0. 其中正确的说法有________个. 答案:02.(2016·北京高考)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为________. 解析:由题意得|a |=1+3=2,|b |=3+1=2,a·b =1×3+3×1=23.设a 与b 的夹角为θ,则cos θ=232×2=32.∵θ∈[0,π],∴θ=π6.答案:π6考点一 平面向量的数量积的运算基础送分型考点——自主练透[题组练透]1.(易错题)设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.已知AB ―→=(2,1),点C (-1,0),D (4,5),则向量AB ―→在CD ―→方向上的投影为( ) A .-322B .-3 5C .322D .3 5解析:选C 因为点C (-1,0),D (4,5),所以CD ―→=(5,5),又AB ―→=(2,1),所以向量AB ―→在CD ―→方向上的投影为|AB ―→|cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=1552=322.3.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 解析:因为a =(-2,-6), 所以|a |=-2+-2=210,又|b|=10,向量a 与b 的夹角为60°,所以a ·b =|a|·|b|·cos 60°=210×10×12=10.答案:104.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的中点,则AB ―→·AD ―→=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→) =AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|cos 45°+|AB ―→|·|CD ―→|cos 45° =22×2×22+22×1×22=6. 法二:建立如图所示的平面直角坐标系, 由题意得A (0,2),B (-2,0),D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2),∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:6[谨记通法]向量数量积的2种运算方法考点二 平面向量数量积的性质题点多变型考点——多角探明 [锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角;(3)平面向量的垂直.[题点全练]角度一:平面向量的模1.已知e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析:∵e 1·e 2=12,∴|e 1||e 2e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.答案:233角度二:平面向量的夹角2.(2017·山西四校联考)已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( )A .π6B .π4C .π3D .2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2a ,b =0,∴a ,b =22,∴a ,b =π4. 3.(2017·江西八校联考)在△ABC 中,AB ―→=(2,3),AC ―→=(1,2),则△ABC 的面积为________.解析:由题意得,(|AB ―→|· |AC ―→|)2=(|AB ―→|·|AC ―→|·cos 〈AB ―→,AC ―→〉)2+(|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉)2,即(|AB ―→|·|AC ―→|)2=(AB ―→·AC ―→)2+(|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉)2, ∴|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=2-3, ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=1-32.答案:1-32角度三:平面向量的垂直4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m+n ),则实数t 的值为( )A .4B .-4C .94D .-94解析:选B ∵n⊥(t m +n ),∴n·(t m +n )=0, 即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B .[通法在握]平面向量数量积求解问题的策略(1)求两向量的夹角:cos θ=a ·b|a |·|b |,要注意θ∈[0,π].(2)求向量的模:利用数量积求解长度问题的处理方法有: ①a 2=a ·a =|a |2或|a |=a ·a . ②|a ±b |=a ±b2=a 2±2a ·b +b 2.③若a =(x ,y ),则|a |=x 2+y 2.(3)两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.[演练冲关]1.(2017·合肥质检)已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a -2b ),则|b |=( )A . 2B .2C .2 2D .4解析:选B 由a ⊥(a -2b )得,a ·(a -2b )=|a |2-2a ·b =0,则|a -b |=a -b2=|a |2-2a ·b +|b |2=|b |=2,故选B .2.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8.∵|a |2=(3e 1-2e 2)2=9+4-12×1×1×13=9,∴|a |=3.∵|b |2=(3e 1-e 2)2=9+1-6×1×1×13=8,∴|b |=22,∴cos β=a ·b |a |·|b |=83×22=223.答案:2233.已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λ AB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.解析:BC ―→=AC ―→-AB ―→,由于AP ―→⊥BC ―→, 所以AP ―→·BC ―→=0,即(λAB ―→+AC ―→)·(AC ―→-AB ―→) =-λAB ―→2+AC ―→2+(λ-1)AB ―→·AC ―→=-9λ+4+(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12=0,解得λ=712.答案:712考点三 平面向量与三角函数的综合重点保分型考点——师生共研[典例引领]已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R . (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解:(1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z).(2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝ ⎛⎭⎪⎫2A +π3=-1.又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3.∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.① ∵向量m =(3,sin B )与n =(2,sin C )共线, 所以2sin B =3sin C .由正弦定理得2b =3c ,② 由①②,可得b =3,c =2.[由题悟法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求值域等.[即时应用](2017·临沂模拟)已知向量m =(sin α-2,-cos α),n =(-sin α,cos α),其中α∈R .(1)若m ⊥n ,求角α;(2)若|m -n |=2,求cos 2α的值. 解:(1)若m ⊥n ,则m ·n =0,即为-sin α(sin α-2)-cos 2α=0,即sin α=12,可得α=2k π+π6或α=2k π+5π6,k ∈Z .(2)若|m -n |=2,即有(m -n )2=2, 即(2sin α-2)2+(2cos α)2=2, 即为4sin 2α+4-8sin α+4cos 2α=2, 即有8-8sin α=2,可得sin α=34,即有cos 2α=1-2sin 2α=1-2×916=-18.一抓基础,多练小题做到眼疾手快1.设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( ) A .-6 B .10 C . 5D .10解析:选D ∵a =(1,x ),b =(2,-4)且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10,故选D .2.(2017·河南八市重点高中质检)已知平面向量a ,b 的夹角为2π3,且a ·(a -b )=8,|a |=2,则|b |等于( )A . 3B .2 3C .3D .4解析:选D 因为a ·(a -b )=8,所以a ·a -a ·b =8,即|a |2-|a ||b a ,b =8,所以4+2|b |×12=8,解得|b |=4.3.已知|a |=3,|b |=2,(a +2b )·(a -3b )=-18,则a 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选B (a +2b )·(a -3b )=-18, ∴a 2-6b 2-a ·b =-18,∵|a |=3,|b |=2,∴9-24-a ·b =-18, ∴a ·b =3,∴a ,b =a ·b |a ||b |=36=12, ∴a ,b =60°.4.已知a =(m +1,-3),b =(1,m -1),且(a +b )⊥(a -b ),则m 的值是________. 解析:a +b =(m +2,m -4),a -b =(m ,-2-m ), ∵(a +b )⊥(a -b ),∴m (m +2)-(m -4)(m +2)=0, ∴m =-2. 答案:-25.△ABC 中,∠BAC =2π3,AB =2,AC =1,DC ―→=2BD ―→,则AD ―→·BC ―→=________.解析:由DC ―→=2BD ―→,得AD ―→=13(AC ―→+2AB ―→).∴AD ―→·BC ―→=13(AC ―→+2AB ―→)·(AC ―→-AB ―→)=13(AC ―→2+AC ―→·AB ―→-2AB ―→2) =13⎣⎢⎡⎦⎥⎤12+1×2×⎝ ⎛⎭⎪⎫-12-2×22=-83. 答案:-83二保高考,全练题型做到高考达标1.已知向量a =(1,x ),b =(-1,x ),若2a -b 与b 垂直,则|a |=( ) A . 2 B . 3 C .2D .4解析:选C 由已知得2a -b =(3,x ),而(2a -b )·b =0⇒-3+x 2=0⇒x 2=3,所以|a |=1+x 2=4=2.2.(2017·贵州适应性考试)若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=( )A .-12B .32-1 C .12D .32解析:选A 由题意可得e 1·e 2=12,|a |2=(e 1+λe 2)2=1+2λ×12+λ2=34,化简得λ2+λ+14=0,解得λ=-12,故选A .3.平面四边形ABCD 中,AB ―→+CD ―→=0,(AB ―→-AD ―→)·AC ―→=0,则四边形ABCD 是( ) A .矩形 B .正方形 C .菱形D .梯形解析:选C 因为AB ―→+CD ―→=0,所以AB ―→=-CD ―→=DC ―→,所以四边形ABCD 是平行四边形.又(AB ―→-AD ―→)·AC ―→=DB ―→·AC ―→=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.4.(2016·重庆适应性测试)设单位向量e 1,e 2的夹角为2π3,a =e 1+2e 2,b =2e 1-3e 2,则b 在a 方向上的投影为( )A .-332B .- 3C . 3D .332解析:选A 依题意得e 1·e 2=1×1×cos2π3=-12,|a |=e 1+2e 22=e 21+4e 22+4e 1·e 2=3, a·b =(e 1+2e 2)·(2e 1-3e 2)=2e 21-6e 22+e 1·e 2=-92,因此b 在a 方向上的投影为a·b |a |=-923=-332,故选A .5.(2017·成都模拟)已知菱形ABCD 边长为2,∠B =π3,点P 满足AP ―→=λAB ―→,λ∈R ,若BD ―→·CP ―→=-3,则λ的值为( )A .12B .-12C .13D .-13。