信号与系统第3章
- 格式:ppt
- 大小:3.69 MB
- 文档页数:276
3-1 解题过程:(1)三角形式的傅立叶级数(Fourier Series ,以下简称 FS )f ( t ) = a ++∞cos ( n ω t) + b sin ( n ω t ) a 0 ∑ n 1n 1 n =1式中ω1 =2π,n 为正整数,T 1 为信号周期T 11 t +T(a )直流分量a 0 = 0 ∫ 1 f ( t ) dtT1 t2 t +T(b )余弦分量的幅度a n = 0∫ 1f ( t ) cos ( n ω1t ) dtT1 t 02 t +T(c )正弦分量的幅度b n = 0 ∫ 1f ( t ) sin ( n ω1t ) dtT 1 t(2)指数形式的傅立叶级数+∞f ( t ) = ∑ F ( n ω1 )e jn ω1tn =其中复数频谱F n= F ( n ω1 ) = 1 ∫t 0 +T 1f ( t ) e − jn ω1t dt T 1 t 0F n =1( a n − jb n ) F − n = 1 ( a n + jb n ) 2 2由图 3-1 可知, f ( t ) 为奇函数,因而a 0 = a n = 04 Tb n = T ∫02= 2Eπ n4TE−2EEf (t ) sin ( n ω t ) dt =sin ( n ω t ) dt = cos ( n ω t = 1 − cos ( n π2T 1 ∫0 2 1 n t 1 n ) 1n = 2, 4,n = 1, 3,所以,三角形式的 FS 为2 E1 12π f ( t ) =sin ( ω1t ) +sin ( 3ω1t ) +sin ( 5ω1t ) +ω1 =π 3 5T指数形式的 FS 的系数为1n = 0, ±2, ±4,F n = − jb n jE=2 n = 0,−± 1, ±3,n π1所以,指数形式的 FS 为f ( t ) = − jE π ej ω1t+ πjE e − j ω1t − 3jE π e j 3ω1t + 3jEπ e − j 3ω1t +3-15 分析:半波余弦脉冲的表达式 f ( t ) =πτ E cos t u t+ τ 2求 f ( t ) 的傅立叶变换有如下两种方法。
3.1信号分解为正交函数3.2 傅里叶级数3.3 周期信号的频谱3.4 非周期信号的频谱——傅里叶变换3.5 傅里叶变换的性质3.6 周期信号的傅里叶变换3.7 LTI系统的频域分析3.8 取样定理3.1信号分解为正交函数一、矢量正交与正交分解时域分析,以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数;而y f (t) = h(t)*f(t)。
本章将以正弦信号和虚指数信号e j ωt 为基本信号,任意输入信号可分解为一系列不同频率的正弦信号或虚指数信号之和。
用于系统分析的独立变量是频率,故称为频域分析。
矢量V x = ( v x1, v x2, v x3)与V y = ( v y1, v y2, v y3)正交的定义:由两两正交的矢量组成的矢量集合---称为正交矢量集如三维空间中,以矢量v x =(2,0,0)、v y =(0,2,0)、v z =(0,0,2)所组成的集合就是一个正交矢量集。
例如对于一个三维空间的矢量A ,可以用一个三维正交矢量集{v x ,v y ,v z }分量的线性组合表示。
即A=C 1v x + C 2v y + C 3v z 矢量空间正交分解的概念可推广到信号空间,在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性二、信号正交与正交函数集1. 定义:定义在(t 1,t 2)区间的两个函数f 1(t)和f 2(t),若满足⎰=21t t 210t d )t (f )t (f (两函数的内积为0) (3-10)则称f 1(t)和f 2(t) 在区间(t 1,t 2)内正交。
2. 正交函数集:若n 个函数g 1(t),g 2(t),…,g n (t)构成一个函数集,当这些函数在区间(t 1,t 2)内满足⎰⎧≠=2t j i ,0t d )t (g )t (g3. 完备正交函数集:如果在正交函数集{g 1(t),g 2(t),…,g n (t)}之外,不存在函数g(t)(≠0)满足则称此函数集为完备正交函数集。
第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集? 解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。