信号与系统第三章习题
- 格式:pdf
- 大小:124.71 KB
- 文档页数:4
第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。
3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。
1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。
(a)(c)3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。
3.14、求图所示系统的单位序列响应和阶跃响应。
3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。
3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。
3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。
(提示:利用卷积和的结合律和交换律,可以简化运算。
)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。
信号与系统练习题——第1-3章信号与系统练习题(第1-3章)一、选择题1、下列信号的分类方法不正确的是(A )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、连续信号和离散信号2、下列离散序列中,哪个不是周期序列? (D )A 、165()3cos()512f k k ππ=+ B 、2211()5cos()712f k k ππ=+ C 、33()9sin()5f k k π= D 、433()7sin()45f k k π=+ 3、下列哪一个信号是周期性的?(C )。
A 、()3cos 2sin f t t t π=+;B 、()cos()()f t t t πε=;C 、()sin()76f k k ππ=+; D 、1()cos()53f k k π=+。
4、周期信号()sin6cos9f t t t =+的周期为(D )A 、πB 、2πC 、12π D 、23π5、周期信号()sin3cos f t t t π=+的周期为(C )。
A 、πB 、2πC 、无周期D 、13π 6、以下序列中,周期为5的是(D ) A. 3()cos()58f k k π=+ B. 3()sin()58f k k π=+ C. 2()58()j k f k eπ+= D. 2()58()j k f k e ππ+=7、下列说法正确的是(D )A 、两个周期信号()x t ,()y t 的和信号()()x t y t +一定是周期信号B 、两个周期信号()x t ,()y t 的周期分别为2()()x t y t +是周期信号C 、两个周期信号()x t ,()y t 的周期分别为2和π,则信号()()x t y t +是周期信号D 、两个周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号8、下列说法不正确的是(A )A 、两个连续周期信号的和一定是连续周期信号B 、两个离散周期信号的和一定是离散周期信号C 、连续信号()sin(),(,)f t t t ω=∈-∞+∞一定是周期信号D 、两个连续周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号9、(52)f t -是如下运算的结果(C )A 、(2)f t -右移5B 、(2)f t -左移5C 、(2)f t -右移25 D 、(2)f t -左移25 10、将信号()f t 变换为(A )称为对信号()f t 的平移。
3-1判断下列信号是周期信号还是非周期信号,若是周期信号,试求出其周期。
(1).t t 6cos 4sin +(2).2)(sin t π(3).)1(sin -πt3-2.周期信号)38cos(2)65sin(cos 3)(π--π-+=t t t t f ,试分别画出此信号的单边、双边幅度频谱和相位频谱图。
3-3.已知)()(ω↔F t f ,求↔-)26(t f3-4.求下列信号的傅氏反变换。
(1)ωπ-ωε-+ωε5cos )]5()5([ (2)1)1sin(1)1sin(-ω-ω++ω+ω (3)2sin ωω-j3-5.已知)()(ωF t f ↔,求下列信号的傅氏变换:(1))2(t tf (2))()2(t f t -(3))2()2(t f t -- (4)dt t df t )( (5))1(t f - (6))1()1(t f t -- (7))52(-t f3-6.已知ττωd f t f F t f t )]1(2[)(),()(1211-=↔⎰∞-,求↔)(2t f3-6求下列函数的的傅氏变换。
)(a 、t t f 1)(1=,)(b 、t t f =)(2,)(c 、)()(3t t t f ε=,)(d 、t t f =)(4 3-7利用傅氏变换的性质,求下列谱函数的傅氏变换。
)(a 、)(0ωωδ-,)(b 、)(2ωε3-8已知某系统函数65)(2++-=ωωωωj j H ,输入)()(t e t x tε-=,试求系统的零状态响应,并指出响应中的强制分量和自然分量。
3-9.若系统函数11)(+=ωωj H ,激励为周期信号t t t e 3sin sin )(+=。
试求零状态响应)(t y ,并讨论经传输是否引起失真。
3-10.理想高通滤波器的系统函数为⎪⎩⎪⎨⎧<>=-cc t jde H ωωωωωω0)(,其中c ω为截止角频率,d t 为延迟时间。
第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集? 解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。
3-1 求图3-1所示对称周期矩形信号的傅利叶级数〔三角形式和指数形式〕。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数〔FS 〕为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数〔FS 〕的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
假设:图3-22T-2-重复频率kHz f 5= 脉宽s μτ20=幅度V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数〔FS 〕的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n那么的指数形式的傅利叶级数〔FS 〕为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 假设周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:〔1〕)(1t f 的谱线间隔和带宽〔第一零点位置〕,频率单位以kHz 表示; 〔2〕)(2t f 的谱线间隔和带宽; 〔3〕)(1t f 与)(2t f 的基波幅度之比; 〔4〕)(1t f 基波与)(2t f 三次谐波幅度之比。
《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S RS LS C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。
若:求直流分量大小以及基波、二次和三次谐波的有效值。
解:直流分量⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=n b)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-==)(21T n Sa T E a F n n πςτ== 基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。
解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。
信号与系统徐天成第3版第3章习题答案3-1 已知周期矩形脉冲信号的重复频率,脉宽,幅度,如图题5 kHz f=20 s τ=μ10V E =3-1所示。
用可变中心频率的选频回路能否从该周期矩形脉冲信号中选取出5,12,20,50,80及频率分量来?要求画出图题3-1所示信号的频谱图。
100 kHz 图 题3-1解:,,,,5kHz f =20μs τ=10V E =11200T s fμ==41210f ππΩ==频谱图为从频谱图看出,可选出5、20、80kHz 的频率分量。
3-3 求图题3-3所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。
图 题3-3解: 在一个周期(0,T 1)内的表达式为: ()f t 11()()Ef t t T T =--111110011111()()(1,2,3)2T T jn tjn t n E jE F f t e dt t T e dt n T T T n π-Ω-Ω==--=-=±±±⎰⎰ 11010011111()()2T T E E F f t dt t T dt T T T ==--=⎰⎰傅氏级数为:111122()22244j t j t j t j tE jE jE jE jE f t e e e e ππππΩ-ΩΩ-Ω=-+-+-(1,2,3)2n E F n n π==±±± (0)2(0)2n n n πϕπ⎧->⎪⎪=⎨⎪<⎪⎩3-4 求图题3-4 所示半波余弦信号的傅里叶级数,若, ,大致画出幅10 V E =10 kHz f =度谱。
图 题3-4解:由于是偶函数,所以展开式中只有余弦分量,故傅氏级数中,另由图()f t 0n b =可知有直流分量, 在一个周期(,)内的表达式为:()f t ()f t 2T -2T其中:111cos 4()04T E t t f t T t ⎧Ω<⎪⎪=⎨⎪>⎪⎩112T πΩ=11112401112411()cos T T T T E a f t dt E tdt T T π--==Ω=⎰⎰111111241112422()cos T T jn t jn t T T n n a c f t e dt E t e dt T T -Ω-Ω--===Ω⋅⎰⎰211sin sin 2122cos 3,5,71112n n E E n n n n n πππππ+-⎡⎤⎢⎥=+=-=⎢⎥+--⎢⎥⎣⎦111211122()2T j t T E a c f t e dt T -Ω-===⎰所以,的三角形式的傅里叶级数为:()f t 11122()cos cos 2cos 42315E E E Ef t t t t πππ=+Ω+Ω-Ω+ 3-6 利用信号的对称性,定性判断图题3-6中各周期信号的傅里叶级数中所含有()f t的频率分量。
一填空(30)
1、=−−)2(*)1(k k εε
2、 ∑−∞
==−δk n n )2(
3、
∑∞−∞
==−+−k k k k )1()54(2δ4、卷积和的定义=)(*)(21k f k f
5、任一序列与单位样值序列信号)(k f )(k δ的关系为
6、已知两个序列分别为)()3
1()(1k k f k ε=,)3()()(2−−=k k k f εε,,则, =
)(*)()(21k f k f k s ==)2(s )4(s 7、 f (k )﹡δ(k ) =
8、 f (k )﹡δ(k – ) = 0k
9、()()1−−k k εε=
10、=)(*)(k k εε
12=
13.()()43−∗−k k εε求:=
14设f 1(k )=e -k ε( k ),f 2(k )=ε(k ), f 1(k )*f 2(k )=
15. 已知序列x (k )=(3)-k ε(k ) ,y (k )=1, -∞<k <∞,求= )(*)(k y k x 16,,)()5.0()(1k k f k ε=1)(2=k f ∞<<∞−k ,则=)(*)(21k f k f 17,)()5.0()(1k k f k ε=)()(2k k f ε=,∞<<∞−k ,则 =)(*)(21k f k f
18 f(k)﹡δ(k–
5) = 19 f (k )﹡δ(k – 7) =
6单位阶跃序列与单位取样序列的关系为
20()()23−∗−k k εε求:=
21 ()(47−)∗−k k εε求:=
22 f (k )﹡δ(5) =
23 f (k )﹡δ(7) =
24.
∑∞−∞==−+−k k k k
)1()64(2δ
25
∑∞−∞==−+−k k k k )2()54(2δ
二选择(20)
1 )2(*)3(−+k k x δ的正确结果是()
A )2()5(−k x δ
B )2()1(−k x δ
C )1(+k x
D )5(+k x
2 序列和等于()
)2(2−∑−∞=i k
i i δA 1 B 4 C )(4k ε D )2(4−k ε
3序列和
等于() ∑∞
−∞=k k )(δA 1 B ∞ C )(k ε D )()1(k k ε+ 4.)(4
cos n k δπ等于() A )(n δ B 21
C 4cos
πk D
4
πk
6. 系统的冲激响应与()
A 输入激励信号有关
B 系统结构有关
C 冲激响应强度有关
D 产生冲激时刻有关
5.=)(*)(n n εε( )
A )(n n ε
B
)(2n n εC )()1(n n ε+
D )()1(n n ε−
7. 若,则 等于( )
)(*)()(t h t x t y =)2(*)2(t h t x A )2(2
1t y B )4(4
1t y C )2(4
1t y D )4(2
1t y 8. 线性系统响应的分解特性满足一下规律()
A 一般情况下,零状态响应与系统特性无关
B 若系统的激励信号为零,则系统的零输入响应与强迫响应相等
C 若系统的初始状态为零,则系统的输入响应与自由响应相等
D 若系统的零状态响应为零,则强迫响应也为零
9. 一个离散时间LTI 系统,其输入和单位冲激响应分别为
,,则的结果是()
)(n x )(n h )()(n a n x n ε=)()(n a n h n ε=)(*)(n h n x A a
n a n n −+1)()1(ε B
)()1(n a n n ε+
C n a
(+
n)1
(n
na nε
D )
10.f(k)﹡δ(3) =
A 1
B 0
C f(3)
D f(0)。