1. Continuous-time system yt est ht ht e st h e st d e st h es d est ht yt e stes 与时间无关 Defining H s h t estdt ——Eigenvalue (特征值) Eigenfunction 特征函数 4 2 3 xt 1 1 cos 2t cos4t 2 cos6t 2 3 Consider a real periodic signal xt xt ak e jk0t ak e jk0t a e jk0t k a e jk0t k k k k k real periodic xt e st H sest 2 Chapter 3 Fourier Series 2. Discrete-time system yn zn hn hn zn z n hn yn hkznk k zn hkzk k 与时间无关 Defining H z hnzn ——Eigenvalue (特征值) n x t 1 e j4 t 1 e j4 t 1 e j7 t 1 e j7 t 2 2 2 2 1 2 e j12e j4t 1 2 e j12e j 4 t 1 2 e j 21e j 7 t 1 2 e j 21e j7t 5 Chapter 3 Fourier Series §3.3 Fourier Series Representation(傅立叶级数) Re A e e jk jk0t k k 1 2 ak Bk jCk xt a0 2 Ak cosk0t k k 1 xt a0 2 Re Bk jCk e jk0t k 1 xt a0 2 Bk cos k0t Ck sin k0t 8 k 1 Chapter 3 Fourier Series Example : Consider an LTI system for which the input xt 1 1 cos2t and the impulse response ht etut determine the 2 output yt x t e j0t 1 e j2 t e j2 t 4 k 0,1,2, xt ake jk0t ——Fourier Series k ak ——Fourier Series Coefficients Spectral Coefficients (频谱系数) Baidu Nhomakorabeaa0 Constant Component a1 Fundamental Component a2 Second Harmonic Component 6 Chapter 3 Fourier Series Example 3.2 3 x t ak e jk 2 t k 3 a0 1 , a1 1 / 4 a2 1 / 2 , a3 1 / 3 x t 1 1 e j2 t e j2 t 1 e j4 t e j4 t 1 e j6 t e j6 t ak ak 7 Chapter 3 Fourier Series xt ak e jk0t a0 ak e jk0t ak e jk0t k k 1 x t a0 2 Re ake jk0t a e jk0t k k 1 1 ak Ake jk x t a0 2 Chapter 3 Fourier Series Representations of Periodic Signals 1 Chapter 3 Fourier Series §3.2 The Response of LTI Systems to Complex Exponentials LTI 系统对复指数信号的响应 9 Chapter 3 Fourier Series x t ak e jk0t k yt ak H jk0 e jk0t k §3.3.2 Determination of Fourier Series Representation 1 xt e j2 t y t e j2t3 H s h t estdt t 3 estdt e3s S x t e j2t H s e j2t e j6e j2t e j2t3 s j2 2 xt cos 4t cos 7t yt cos 4t 3 cos 7t 3 Eigenfunction 特征函数 zn H z zn 3 Chapter 3 Fourier Series Continuous-time system eskt H sk eskt akeskt ak H sk eskt k k xt yt Discrete-time system Particularly H j et u t e j tdt ete j tdt 0 H j e j 1t j 1 0 1 j 1 0 yt H j0e j0 t 1 H j2 e j2 t 1 H j2 e j2 t 4 4 1 e j2t 1 e j 2t yt 1 4 4 1 j2 1 j2 of Continuous-time Periodic Signals §3.3.1 Linear Combinations (线性组合) of Harmonically Related Complex Exponentials xt T0 xt k t e jk0 t 0 2 T0 ——Fundamental frequency zkn H zk z n k xn a k z n k k yn ak H zk zkn k e j t H j e j t Fourier Analysis e j n H e j e j n Fourier Analysis 4 Chapter 3 Fourier Series Example 3.1 Consider an LTI system : ht t 3 yt xt 3