抽样调查[1]
- 格式:ppt
- 大小:1.44 MB
- 文档页数:29
8.2普查和抽样调查
学习目标
1、知道什么是普查和抽样调查,知道什么是总体、个体、样本及样本容量的概念
2、调查时,知道什么时候用普查,什么时候用抽样调查
核心知识
1、知道什么是普查和抽样调查,知道什么是总体、个体、样本及样本容量的概念
学习过程
一、导入新课
想了解全班同学的体重,如何调查?
二、新知学习
模块一
阅读课本P93,解决下面的问题:
找出普查、抽样调查、总体、个体、样本及样本容量概念,并作出标记,举手给老师示意。
模块训练:数学课本P94习题8.2第1、2题
模块二
知道普查和抽样调查的特点区别,能准确判断什么时候用普查,什么时候用抽样调查
模块训练:随堂检测8.2(1)
三、当堂检测
四、课堂小结
1、调查分为普查和抽样调查两种,对于一个普查事件能找出总体和个体,对于一
个抽样调查事件能找出样本和样本容量。
2、普查的特点:普查结果准确,精确度高,但普查工作量大,具有破坏性,费人
力、物力和时间较多;
抽样调查的特点:精确度、难度相对不大,实验无破坏性,调查结果比较近似.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.五、课下作业
随堂检测剩余的题
六、反思。
抽样调查教案设计•相关推荐抽样调查教案设计(通用6篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编精心整理的抽样调查教案设计,希望对你有帮助! 抽样调查教案设计篇1教学设计思想:本节需两课时来讲授;教师首先从具体实例中入手,引入总体、个体等相关概念,在从解决实际问题的过程中学会普查与抽样调查这两种调查方式。
在学习本节过程中,让学生体会通过样本了解总体的思想方法。
教学目标:1.知识与技能:知道抽样调查与普查的概念;明确总体、个体、样本、样本容量的概念;知道抽样调查是为了了解总体情况的一种重要的数学方法;会用抽样调查方式选取样本。
2.过程与方法经历抽样调查选取样本的方法,体会抽样调查方法的科学性及实际意义。
3.情感、态度与价值观教学重点:理解总体与个体的概念。
教学难点:能分辨问题中哪是考察对象、总体、个体、样本与样本容量.了解它们之间的区别与联系。
教学方法:启发引导式。
教学媒体:幻灯片。
教学安排:2课时。
教学过程:第一课时:Ⅰ.问题情境师:生活中有许多实际问题需要调查收集数据,并根据数据来作出判断,但当要调查的对象太多或调查本身具有某种破坏性时,该怎么办呢?下面我们来看个实例。
2008年,第29届奥运会将在北京举办,游泳、跳水、体操、举重、设计、羽毛球和乒乓球等都是我国的优越项目。
在这些比赛项目中,你最爱看哪项比赛?我们班的同学中,哪个比赛最爱看的人最多?(幻灯片)[教法]:以奥运会为导入,激发学生们的兴趣,让学生们相互讨论,增加课堂气氛。
Ⅱ.新课讲授师:现在我们统计一下同学们都爱看哪个比赛,我说一个比赛项目,爱看的同学就举起手。
采用举手表决的方式进行调查,了解全班同学中最爱观看的比赛项目的人数。
教师总结:同学们,上面我们对咱们全班的同学做了这么一个调查,那么,像这种为了特定目的对所有考察对象作的全面调查叫做普查。
第4章抽样调查作业答案一.单项选择题1.抽样调奁的主要目的在于( 3 )。
①计算和控制误差:②了解总体单位情况③用样本来推断总体:④对调查单位作深入的研究2.抽样调查所必须遵循的基本原则是( 4 )。
①随意原则:②可比性原则:③准确性原则:④随机原则。
3.极限误差与抽样平均误差数值之间的关系为( 4 )①前者一定小于后者②前者一定大于后者③前者一定等于后者④前者既可以大于后者,也可以小于后者4.无偏性是指( 1 )。
①抽样指标等于总体指标:②样本平均数的平均数等于总体平均数:③样本平均数等于总体平均数;④样本成数等于总体成数。
5.一致性是指当样本的单位数充分大时,抽样指标( 4 )。
①小于总体指标;②等于总体指标:③大予总体指标:④充分靠近总体指标6.有效性是指作为优良估计量的方差与其他估计量的方差相比有( 1 )。
①前者小于后者;②前者大于后者:③两者相等;④两者不等。
7.能够事先加以计算和控制的误差是( 1 )。
①抽样误差:②登记误差:③代表性误差;④系统性误差。
8.从总体N个不同单位每次抽取n个单位作为样本。
如果采用考虑顺序的重复抽样方法,则样本的可能数目为( 3 )。
③N n9.从总体N个不同单位每次抽取n个单位作为样本,如果采用不考虑顺序的不重复抽样方法,则样本的可能数目为( 4 )。
④()(N+n-1)!/(N-1)!n!1O.对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。
抽样平均误差( 2 )。
①第一个工厂大;②第二个工厂大:③两工厂一样大;④无法做出结论。
(不重复抽样的:抽样平均平均误差=方差*(1-n/N)1/2/n1/2)11.?抽样平均误差是指抽样平均数(或抽样成数)的()。
①平均数:②平均差③标准差④标准差系数12.在同样情况F,不重复抽样的抽样平均误差与重复抽样的抽样平均误差相比,是( 3 )。
第一节抽样调查的基本概念一、抽样调查的概念与特点抽样调查,它是按照一定程序,从所研究对象的全体(总体)中抽取一部分(样本)进行调查或观察,并在一定的条件下,运用数理统计的原理和方法,对总体的数量特征进行估计和推断。
抽样方法可分为随机抽样(也称概率抽样)和非随机抽样(非概率抽样)两大类。
随机抽样是指按照概率原则,从总体中抽取一定数目的单位作为样本进行观察,随机抽样使总体中每个单位都有一定的概率被选入样本,从而使根据样本所做出的结论对总体具有充分的代表性。
非随机抽样是从方便出发或根据研究者主观的判断来抽取样本。
非随机抽样简单易行,尤其适用于做探索性研究。
与全面调查相比,抽样调查具有以下三个显著特点:1、经济。
2、高效。
3、准确。
二、抽样调查的作用1、对一些不可能或不必要进行全面调查的社会经济现象,可用抽样调查方式解决。
2、在经费、人力,物力和时间有限的情况下,采用抽样调查方式,可节省开支,争取时效,用比较少的人力、物力和时间,达到满意的调查效果。
3、抽样调查可对同一现象在不同时间进行连续不断的调查,可随时了解现象发展变化状况。
4、运用抽样调查对全面调查进行验证。
5、抽样调查还可运用于企业管理,尤其是产品质量管理,能更好地使企业为生产和市场服务。
三、常用术语1、总体和样本总体是指所要调查对象的全体。
样本是总体的一部分,它由从总体中按一定程序抽得的那部分个体或抽样单元组成。
2、总体指标和样本指标。
总体指标是根据总体各单位标志值计算,常用的总体指标有:总体平均数、总体比例、总体方差。
样本指标是根据样本各单位标志值计算。
常用的样本指标有样本平均数、样本比例户、样本方差。
3、重复抽样和不重复抽样。
从总体中具体抽取抽样单位的方法有两种:即重复抽样和不重复抽样。
●重复抽样又称有放回抽样,是一种在总体中允许重复抽取样本单位的抽选方法,即从总体中随机抽出一个样本单位后,将它再放回去,使它仍有被选取的机会,在抽样过程中总体单位数始终相同。
第二十五章 抽样调查【本章考情分析】 年份单选题 多选题合计 2019年 卷Ⅲ2题2分 2分卷Ⅳ2题2分 2题4分 6分 2018年 卷Ⅱ3题3分 1题2分 5分 卷Ⅳ 4题4分 1题2分 6分 2017年 2题2分 3题6分 8分2016年 2题2分 2分2015年 2题2分1题2分 4分【本章基本框架】【本章考点详解】第一节 抽样调查的基本概念【本节知识点】【知识点1】抽样调查的基本概念 【知识点2】概率抽样与非概率抽样 【知识点3】抽样调查的一般步骤 【知识点4】抽样误差与非抽样误差 【本节知识点详解】【知识点1】抽样调查的基本概念抽样调查是使用频率最高的一种调查方式。
它是指按照某种原则和程序,从总体中抽取一部分单位,通过对这一部分单位进行调查得到信息,以达到对总体情况的了解,或者对抽样调查抽样调查的基本概念 几种基本的概率抽样方法 估计量与样本量1.抽样调查的基本概念2.概率抽样与非概率抽样3.抽样调查的一般步骤4.抽样误差与非抽样误差1.五种基本的概率抽样方法1.估计量的选择标准2.抽样误差的估计3.样本量的影响因素总体的有关参数进行估计。
【例如】从某公司1000名注册在职员工中随机抽取200名员工来了解该企业注册在职人员的工资状况。
抽样调查的相关概念如下表:【考点提示】关于总体、样本、总体参数、样本统计量和抽样框这几个概念主要在于理解,考试时更侧重考核例子,通过所给出的例子来判断是什么概念。
例题精讲【真题•2015单选】在某市随机抽取2000家企业进行问卷调查,并据此调查有对外合作意向的企业,该抽样调查中的样本统计量是( )。
A. 该市所有企业B. 该市所有有对外合作意向的企业C. 抽中的2000家企业D. 抽中的2000家企业中有对外合作意向的企业 【答案】D【解析】本题中涉及的概念如下表【知识点2】概率抽样与非概率抽样根据抽样方法不同,可以将抽样分为概率抽样和非概率抽样两类,具体内容如下表例题精讲【真题•2015单选】在街边或居民小区拦住行人进行调查的抽样方法属于( )。
第3章分层随机抽样第一节概述第二节简单估计量及其性质第三节比率估计量及其性质第四节回归估计量及其性质第五节各层样本量的分配第六节总样本量的确定第七节分层抽样的其他方法2015/4/21第一节定义与符号2015/4/22一、定义定义3.1层:如果一个包含N 个单位的总体可以分成“不重不漏”的L 个子总体,亦即每个单元必属于且仅属于一个子总体,则称这样的子总体为层(stratum )。
设L 个子总体所包含的单位数分别为12,,L N N N ,则有:12L N N N N +++=2015/4/23定义3.2分层抽样(stratified sampling ):又称为类型抽样或分类抽样。
即抽样在每一层中独立进行,总的样本由各层样本组成,总体参数则根据各层样本参数的汇总做出估计,这种抽样就称为分层抽样,所得样本称为分层样本。
设总的样本量为n ,从L 个子总体中所抽取的样本量分别为12,,L n n n ,则有:12L n n n n +++= 。
定义3.3 分层随机抽样(stratified random sampling):如果每层中的抽样都是独立地按照简单随机抽样进行的,那么这样的分层抽样称为分层随机抽样,所得的样本称为分层随机样本(stratified random sample)。
2015/4/24作用分层抽样的抽样效率较高,也就是说分层抽样的估计精度较高。
这是因为分层抽样估计量的方差只和层内方差有关,和层间方差无关。
分层抽样不仅能对总体指标进行推算,而且能对各层指标进行推算。
层内抽样方法可以不同,而且便于抽样工作的组织。
2015/4/25二、分层原则:总体中的每一个单元一定属于并且只属于某一个层,而不可能同时属于两个层或不属于任何一个层。
1.估计:层内单元具有相同性质,通常按调查对象的不同类型进行划分。
2.精度:尽可能使层内单元的指标值相近,层间单元的差异尽可能大,从而达到提高抽样估计精度的目的。