抽样调查[1]
- 格式:ppt
- 大小:1.44 MB
- 文档页数:29
8.2普查和抽样调查
学习目标
1、知道什么是普查和抽样调查,知道什么是总体、个体、样本及样本容量的概念
2、调查时,知道什么时候用普查,什么时候用抽样调查
核心知识
1、知道什么是普查和抽样调查,知道什么是总体、个体、样本及样本容量的概念
学习过程
一、导入新课
想了解全班同学的体重,如何调查?
二、新知学习
模块一
阅读课本P93,解决下面的问题:
找出普查、抽样调查、总体、个体、样本及样本容量概念,并作出标记,举手给老师示意。
模块训练:数学课本P94习题8.2第1、2题
模块二
知道普查和抽样调查的特点区别,能准确判断什么时候用普查,什么时候用抽样调查
模块训练:随堂检测8.2(1)
三、当堂检测
四、课堂小结
1、调查分为普查和抽样调查两种,对于一个普查事件能找出总体和个体,对于一
个抽样调查事件能找出样本和样本容量。
2、普查的特点:普查结果准确,精确度高,但普查工作量大,具有破坏性,费人
力、物力和时间较多;
抽样调查的特点:精确度、难度相对不大,实验无破坏性,调查结果比较近似.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.五、课下作业
随堂检测剩余的题
六、反思。
抽样调查教案设计•相关推荐抽样调查教案设计(通用6篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编精心整理的抽样调查教案设计,希望对你有帮助! 抽样调查教案设计篇1教学设计思想:本节需两课时来讲授;教师首先从具体实例中入手,引入总体、个体等相关概念,在从解决实际问题的过程中学会普查与抽样调查这两种调查方式。
在学习本节过程中,让学生体会通过样本了解总体的思想方法。
教学目标:1.知识与技能:知道抽样调查与普查的概念;明确总体、个体、样本、样本容量的概念;知道抽样调查是为了了解总体情况的一种重要的数学方法;会用抽样调查方式选取样本。
2.过程与方法经历抽样调查选取样本的方法,体会抽样调查方法的科学性及实际意义。
3.情感、态度与价值观教学重点:理解总体与个体的概念。
教学难点:能分辨问题中哪是考察对象、总体、个体、样本与样本容量.了解它们之间的区别与联系。
教学方法:启发引导式。
教学媒体:幻灯片。
教学安排:2课时。
教学过程:第一课时:Ⅰ.问题情境师:生活中有许多实际问题需要调查收集数据,并根据数据来作出判断,但当要调查的对象太多或调查本身具有某种破坏性时,该怎么办呢?下面我们来看个实例。
2008年,第29届奥运会将在北京举办,游泳、跳水、体操、举重、设计、羽毛球和乒乓球等都是我国的优越项目。
在这些比赛项目中,你最爱看哪项比赛?我们班的同学中,哪个比赛最爱看的人最多?(幻灯片)[教法]:以奥运会为导入,激发学生们的兴趣,让学生们相互讨论,增加课堂气氛。
Ⅱ.新课讲授师:现在我们统计一下同学们都爱看哪个比赛,我说一个比赛项目,爱看的同学就举起手。
采用举手表决的方式进行调查,了解全班同学中最爱观看的比赛项目的人数。
教师总结:同学们,上面我们对咱们全班的同学做了这么一个调查,那么,像这种为了特定目的对所有考察对象作的全面调查叫做普查。
第4章抽样调查作业答案一.单项选择题1.抽样调奁的主要目的在于( 3 )。
①计算和控制误差:②了解总体单位情况③用样本来推断总体:④对调查单位作深入的研究2.抽样调查所必须遵循的基本原则是( 4 )。
①随意原则:②可比性原则:③准确性原则:④随机原则。
3.极限误差与抽样平均误差数值之间的关系为( 4 )①前者一定小于后者②前者一定大于后者③前者一定等于后者④前者既可以大于后者,也可以小于后者4.无偏性是指( 1 )。
①抽样指标等于总体指标:②样本平均数的平均数等于总体平均数:③样本平均数等于总体平均数;④样本成数等于总体成数。
5.一致性是指当样本的单位数充分大时,抽样指标( 4 )。
①小于总体指标;②等于总体指标:③大予总体指标:④充分靠近总体指标6.有效性是指作为优良估计量的方差与其他估计量的方差相比有( 1 )。
①前者小于后者;②前者大于后者:③两者相等;④两者不等。
7.能够事先加以计算和控制的误差是( 1 )。
①抽样误差:②登记误差:③代表性误差;④系统性误差。
8.从总体N个不同单位每次抽取n个单位作为样本。
如果采用考虑顺序的重复抽样方法,则样本的可能数目为( 3 )。
③N n9.从总体N个不同单位每次抽取n个单位作为样本,如果采用不考虑顺序的不重复抽样方法,则样本的可能数目为( 4 )。
④()(N+n-1)!/(N-1)!n!1O.对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。
抽样平均误差( 2 )。
①第一个工厂大;②第二个工厂大:③两工厂一样大;④无法做出结论。
(不重复抽样的:抽样平均平均误差=方差*(1-n/N)1/2/n1/2)11.?抽样平均误差是指抽样平均数(或抽样成数)的()。
①平均数:②平均差③标准差④标准差系数12.在同样情况F,不重复抽样的抽样平均误差与重复抽样的抽样平均误差相比,是( 3 )。