焊丝的熔化与熔滴过渡
- 格式:ppt
- 大小:1.30 MB
- 文档页数:32
第二章焊丝的熔化及熔滴过渡熔化极电弧焊的焊丝(条)具有两个作用:一是作为电极并与工件之间产生电弧;另是本身被加热熔化并作为填充金属过渡到熔池中去。
焊丝(条)的熔化及熔滴过渡,是熔化极电弧焊接过程中的重要物理现象,熔滴过渡方式及特点将直接影响焊接质量和生产效率。
第一节焊丝的加热与熔化一、焊丝的加热与熔化特性熔化极电弧焊时焊丝(条)的熔化主要是靠阴极区(正接)或阳极区(反接)所产生的热量,中括号焊接情况下,UK >> UW所以Pk>PA,这时,在同一材料和同一电流情况下,焊丝(条)为阴极(正接)时的产生热量要比为阳极(反接)时多。
因散热条件相同,所以焊丝(条)接负时比焊丝(条)接正时熔化快。
焊丝除了受电弧的加热外,在自动和半自动焊时,从焊丝与导电嘴的接触点到焊丝端头的一段焊丝(即焊丝伸出长度用表示)有焊接电流流过,所产生电阻热对焊丝有预热作用,从而影响焊丝的熔化速度(图2-1)。
特别是焊丝比较细和焊丝金属的电阻系数比较大时(如不锈钢),这种影响更为明显。
焊丝伸出长度的电阻热为:P R=I2RsRs=PLs/S (2-4)式中 Rs----为Ls段的电阻值;P-----焊丝的电阻率;Ls----焊丝的伸出长度;S----焊丝的断面积。
材料不同时,焊丝伸出长度部分产生的电阻热也不同。
如熔化极气体保护焊时,通常Ls=10~30mm,对于导电良好的铝和铜等金属,PR 与PA或PK相比是很小的,可忽略不计。
而对钢和钛等材料,电阻率高。
当伸出长度较大时PR 与PA或PK相比较大才有重要的作用。
)来表这是mα弧长较长时,电弧电压的变化对焊丝熔化速度影响不大;但在弧长较短的范围内,电弧电压降低,反而使得焊丝熔化速度增加。
在铝合金焊接时这种现象特别明显,图2-4a中的各条曲线,表示了直径为φ1.6mm铝合金焊丝等速送进时的熔化速度与电弧电压及电流的关系。
由图中可见,当弧长较长时,曲线AB段段与横轴垂直,此时的焊丝送进速度与熔化速度相平衡,焊丝的熔化速度主要决定于电流的大小。
熔滴过渡:电弧焊时,焊丝(或焊条)的末端在电弧的高温作用下加热熔化,熔化的金属积累到一定程度便以一定的方式脱离焊丝末端,并过渡到熔池中去,这个过程称作熔滴过渡。
熔化极电弧焊时,焊丝的作用:1、作为电弧的一极导电并传输能量,2、作为填充材料向熔池提供熔化金属并和熔化的母材一起冷却结晶形成焊缝。
焊丝熔化的热源:1、熔化极电弧焊焊丝的熔化主要依靠阴极区(直流正接)或者阳极区(直流反接)所产生的热量及焊丝自身的电阻热。
弧柱的热辐射是次要的。
2、非熔化极电弧焊填充焊丝时,主要依靠弧柱热来熔化焊丝。
电弧的静特性:是指在电极材料,气体介质和弧长一定的情况下,电弧稳定燃烧时,焊接电流与电弧电压的变化关系,也成伏-安特性。
Ua=f(i)Ua=U k+U C+U AU a—电弧电压;U k阴极压降;U C弧柱压降;U A阳极压降电弧产热能量关系:焊接电弧是具有很强能量的导电体,其能量来源于焊接电源。
单位时间焊接电源向阴极区、弧柱区、阳极区提供的总能量表示为:P=P K+P C+P A=I U k+IU C+IU A阴极区产热:在阴极压降的环境下,电子和正离子不断的产生,消失,运动,构成了能量的转变和传递过程。
P K=I(U k– U w– U T)U k阴极压降,U w电子逸出电压,U T弧柱区温度等效电压阳极区产热:P A= I(U A + U w+ U T)弧柱区的产热:P C=IU c电弧的温度分布:1、纵向温度分布:阴极区和阳极区的电流密度和能量密度均高于弧柱区,但是温度的分布却与电流密度和能量密度不同,是电极的温度低而弧柱区温度较高,这是因为电极区受到电极材料的熔点和沸点的限制,而弧柱区中的气体和金属蒸气不受这一限制,而且气体介质的导热性能不如金属电极好,热量的散射相对较少,故而有较高的温度。
一般来讲,阴极因为要发射电子消耗能量较多,故温度比阳极低一些,阴极温度为2200~3500k,而阳极温度为2400~4200K。
电弧增材制造焊丝熔化及熔滴过渡过程建模与仿真研究
陈世雄;姚继开;范立想;唐伟东;康小明
【期刊名称】《电加工与模具》
【年(卷),期】2024()3
【摘要】基于动网格和多物理场耦合技术,建立了焊丝熔化和熔滴过渡的热流耦合数学模型。
研究了焊丝熔化形成熔滴、熔滴与基板的接触和铺展、熔融金属桥形成和拉断过程。
分析了熔滴在送丝过程中的温度变化、熔滴和熔池的速度变化、熔滴传质过程中的体积变化。
结果表明,熔滴尺寸、形状与实验结果可较好吻合,最终转移至基板表面熔融铝的体积约占熔滴总体积的80%。
【总页数】6页(P48-53)
【作者】陈世雄;姚继开;范立想;唐伟东;康小明
【作者单位】长沙理工大学汽车与机械工程学院;省部共建精密电子制造技术与装备国家重点实验室;上海交通大学机械与动力工程学院
【正文语种】中文
【中图分类】TG669
【相关文献】
1.熔滴过渡模式及丝材对电弧增材制造Al⁃6.3 Cu合金气孔含量的影响
2.30CrMnSiA金属粉芯型药芯焊丝熔滴过渡分析与电弧增材研究
3.单电源三丝电弧增材制造熔滴过渡行为及精度
4.药芯焊丝电弧焊电弧形态与熔滴过渡行为的研究
因版权原因,仅展示原文概要,查看原文内容请购买。
熔滴过渡名词解释熔滴过渡是指在电弧热作用下,焊丝或焊条端部的熔化金属形成熔滴,受到各种力的作用从焊丝端部脱离并过渡到熔池的全过程。
它与焊接过程稳定性、焊缝成形、飞溅大小等有直接关系,并最终影响焊接质量和生产效率。
熔滴过渡状态是指焊条熔化后滴入熔池的状态。
对熔滴过渡产生影响的因素包括保护气体的种类和成分,焊接电流和电压,焊条的成分和直径等。
1. 粒状熔滴过渡(Globular transfer)指熔滴直径比所使用的wire直径大时的过渡状态。
可以细分为低电流和中间程度的焊接电流范围内所产生的drop transfer和较高电流co2焊接时产生的repelled transfer。
2.短路熔滴过渡(Short circuiting transfer)Wire端部产生的熔滴与熔池直接接触过渡。
在低电流电压co2焊接时,或在惰性气体成分高的焊接条件下,即MAG或MIG焊接时会出现。
3.旋转熔滴Rotating transfer :在GMAW的大电流领域产生的现象。
由于电流越高熔合效率越高,因此从效率方面考虑时电流越高越好。
但是与其相对应缺点是很难控制熔池,易产生焊接不良。
目前对提高焊接效率的研究主要集中在rotating mode的control方面。
4.射流过渡Spray transfer :是指比焊接wire小的熔滴的过渡状态。
在较高电流中Ar主成份的保护气体焊接时产生。
喷雾过渡时熔滴一滴一滴有规律的过渡,因此称为projected transfer。
熔化后滴落的wire前端形成小的粒状,熔滴以流淌的状态过渡,称为streaming transfer 。
另外熔化的wire前端拉长并高速旋转的过渡称为rotating transfer。
5.球状体过渡前端熔化金属变大形成球状,继而发展为比表面张力还重的大粒熔滴,向母材侧落下过渡的形态叫球状体过渡。
这种形式在CO2焊接的电流区更明显。
因熔滴过渡时不是直落而下,所以焊缝略显不规则,飞溅也多。
co2气体保护焊的熔滴过渡形式CO2气体保护焊是一种常用的焊接方法,它使用CO2气体作为保护气体,以保护熔池免受空气中氧气和水蒸气的侵蚀。
在CO2气体保护焊过程中,焊工需要掌握熔滴过渡形式,以确保焊接质量和效率。
首先,让我们来理解什么是熔滴过渡形式。
在焊接过程中,焊接电弧所产生的热量会使焊接材料(工件和焊丝)熔化,形成熔滴,并通过熔滴的传送与焊件融为一体,从而完成焊接。
而熔滴过渡形式指的是焊接过程中熔滴的形态变化。
熔滴的过渡形式主要有滴落式、喷射式和短脉冲式三种。
滴落式熔滴过渡形式是最常见的形式。
在焊接开始阶段,焊丝在电弧烧蚀下形成小颗粒熔滴,这些熔滴相对较大,重力的作用下从焊丝底部滴落到焊件上,并在焊件表面凝固。
这种形式下,焊丝的滴落速度是稳定的,而且既能保证焊缝质量又能提高焊接效率。
喷射式熔滴过渡形式则是在滴落式基础上发展而来。
当焊接电弧稳定后,焊丝熔化后的熔滴将在电弧的作用下向前喷射,形成悬挂在焊丝末端的熔滴。
这种形式下,焊丝的滴落速度相对较快,焊接质量更高,但焊接速度相对较慢,因为喷射式会使热量更加集中在一个小区域,能够提供更高的焊接温度和更好的焊缝质量。
短脉冲式熔滴过渡形式是一种技术复杂度较高的形式。
焊接电弧通过调节电流和电压的变化,实现了熔滴短脉冲的形成。
这种形式下,焊丝的熔滴会以非常快的速度喷出,并迅速接触到焊件表面,焊缝形成后熔滴迅速冷却凝固。
这种形式下,焊接热输入较小,可避免焊接变形,能够用于焊接薄板。
掌握不同熔滴过渡形式的方法对焊工来说非常重要,因为不同的形式适用于不同材料和焊接要求。
在实际操作中,焊工需要根据焊接材料的厚度、焊缝形式和焊接速度等因素,选择合适的熔滴过渡形式,以保证焊接质量和效率。
总结起来,熔滴过渡形式是CO2气体保护焊中关键的焊接参数之一。
通过了解滴落式、喷射式和短脉冲式三种形式的特点和适用范围,焊工可以选择合适的熔滴过渡形式,提高焊接质量和效率,确保焊接工作的顺利进行。
《焊接工程基础》知识要点复习第一章电弧焊基础知识及第二章焊丝的熔化和熔滴过渡一焊接的概念:通过适当的物理化学过程(加热或者加压,或者两者同时进行,用或不用填充材料)使两个分离的固态物体产生原子(分子)间结合力而连接成一体的连接方法。
二电弧的概念:电弧是在一定条件下电荷通过电极间气体空间的一种导电过程,或者说是一种气体放电现象。
三电弧中带电粒子的产生:电弧是由两个电极和它们之间的气体空间组成。
电弧中的带电粒子主要依靠两电极之间的气体电离和电极发射电子两个物理过程所产生的,同时也伴随着解离、激励、扩散、复合、负离子的产生等过程。
四电离与激励(一)电离:在一定条件下中性气体分子或原子分离为正离子和电子的现象称为电离.电离的种类: 1 .热电离:高温下气体粒子受热的作用相互碰撞而产生的电离称为热电离。
2. 电场电离:带电粒子从电场中获得能量,通过碰撞而产生的电离过程称为电场作用下的电离。
3.光电离: 中性粒子接受光辐射的作用而产生的电离现象称为光电离。
(二)电子发射:金属表面接受一定的外加能量,自由电子冲破金属表面的约束而飞到电弧空间的现象.1、热发射金属表面承受热作用而产生的电子发射现象.热阴极:W、C 电极的最高温度不能超过沸点;冷阴极:Fe,Cu,Al,Mg等。
影响因素:温度、材质、表面形态2、电场发射:当金属表面空间存在一定强度的正电场时,金属内的自由电子受此电场静电库伦力的作用,当此力达到一定程度时,电子可飞出金属表面,这种现象称电场发射。
对低沸点材料,电场发射对阴极区提供带电粒子起重要作用。
影响因素:温度、材质、电场大小3、光发射:当金属表面接受光辐射时,也可使金属表面自由电子能量增加,冲破金属表面的约束飞到金属外面来,这种现象称为光发射。
4、粒子碰撞发射:高速运动的粒子(电子或离子)碰撞金属表面时,将能量传给金属表面的自由电子,使其能量增加而跑出金属表面,这种现象称为粒子碰撞发射。
在一定条件下,粒子碰撞发射是电弧阴极区提供导电所需电子的主要途径。