【华南理工考研 有机化学】仪分实验-实验 13- -原子发射光谱法
- 格式:pptx
- 大小:12.50 MB
- 文档页数:23
原子发射光谱法原理原子发射光谱法是一种常用的分析化学方法,它利用原子在高温条件下激发产生的特征光谱来分析物质的成分。
该方法具有灵敏度高、选择性好、分辨率高等优点,被广泛应用于金属材料、环境监测、生物医学等领域。
本文将介绍原子发射光谱法的基本原理及其应用。
首先,我们来了解一下原子发射光谱法的基本原理。
在原子发射光谱法中,样品首先被加热至高温,使得其中的原子处于激发态。
当原子返回基态时,会释放出特定波长的光子,形成特征光谱。
通过检测和分析这些特征光谱,就可以确定样品中各种元素的含量。
这一过程基于原子的能级结构和光谱学原理,因此能够实现对元素的高灵敏度分析。
原子发射光谱法具有很高的灵敏度,这是因为原子在高温条件下能够被有效激发,产生大量的特征光谱。
同时,该方法还具有很好的选择性,不同元素的特征光谱具有明显的区分度,可以准确地识别不同元素。
此外,原子发射光谱法的分辨率也很高,能够实现对元素含量的精确测定。
在实际应用中,原子发射光谱法被广泛应用于金属材料分析领域。
例如,对于钢铁行业来说,原子发射光谱法可以用于快速准确地检测各种合金中的元素含量,保证产品质量。
此外,该方法还可以应用于环境监测,例如对水质中重金属元素的检测。
在生物医学领域,原子发射光谱法也被用于对生物样品中微量元素的分析,为临床诊断提供支持。
总的来说,原子发射光谱法是一种重要的分析化学方法,具有高灵敏度、良好的选择性和高分辨率等优点。
通过对样品中的原子激发特征光谱的检测和分析,可以实现对元素含量的准确测定。
该方法在金属材料、环境监测、生物医学等领域都有着重要的应用价值,为相关领域的研究和生产提供了有力支持。
希望本文的介绍能够帮助读者更好地理解原子发射光谱法的原理及其应用。
实验五原子发射光谱实验(一)--光谱拍摄光波是一种电磁波,令dIλ代表波长在λ到dλλ+之间光的强度,则()dIidλλλ=代表单位波长区间的光强。
()iλ随波长的分布,叫做光谱。
物质的发射光谱有三种:线状光谱、带状光谱及连续光谱。
线状光谱由原子或离子被激发而发射;带状光谱由分子被激发而发射;连续光谱由固体或液体所发射。
本实验主要原子发射光谱。
原子发射光谱法是一种成分分析方法,可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。
这种方法常用于定性、半定量和定量分析。
在一般情况下,原子发射光谱用于1%以下含量的组份测定,检出限可达百万分之一。
光谱技术不仅是人们认识原子、分子结构的重要手段之一,而且它在现代科学技术的各个领域和国民经济的许多部门获得了广泛应用。
例如在半导体材料科学方面,人们应用一种叫做光热电离光谱的技术,可以检测出材料中亿亿分子一含量(1610-)的杂质原子。
一、实验目的1、了解光谱的基本知识。
2、学会用平面光栅摄谱仪拍摄原子发射光谱。
二、实验原理一般情况下,原子处于基态,通过电致激发、热致激发或光致激发等激发光源作用下,原子获得能量,外层电子从基态跃迁到较高能态变为激发态,约经10-8s,外层电子就从高能级向较低能级或基态跃迁,多余的能量的发射可得到一条光谱线。
每种原子都有其特征谱线,根据这个道理,我们通过仪器使分析试样中所含的原子得到激发,然后将产生的光谱分光,使其按波长顺序呈现出有规则的线条记录下来,即称为光谱图,将之与标准谱图对照,由特征谱线是否存在,从而决定出该样品是否含有某种元素,从而完成定性分析。
进一步的分析还可测定所含元素的含量。
三、实验装置原子发射光谱法仪器分为三部分:光源、分光仪和探测器。
1.光源光源使试样蒸发、解离、原子化、激发、跃迁产生光辐射的作用。
光源对光谱分析的检出限、精密度和准确度都有很大的影响。
目前常用的光源有直流电弧、交流电弧、电火花及电感耦合高频等离子体。
仪器分析原子发射光谱实验【目的】1 掌握原子发射光谱法的基本原理;2 了解原子发射光谱仪的操作,了解数据采集及处理软件的使用;3掌握溶液残渣法分析液体样品和用固体粉末法分析固体样品;4 掌握电感耦合等离子体发射光谱仪的工作原理,了解头发样品的消解处理过程,学习电感耦合等离子体发射光谱法测头发中的几种微量元素。
【原理】原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征光谱线,依据特征光谱线的波长和强度确定物质的元素种类及其含量而进行元素的定性与定量分析的方法。
原子发射光谱法的仪器主要分为两大部分:光源与光谱仪。
光谱仪中包括分光系统和检测系统。
光源的作用是提供足够的能量使试样蒸发、原子化、激发,产生发射光谱。
光源的特性在很大程度上影响分析方法的灵敏度、准确度及精密度。
理想的光源应满足高灵敏度、高稳定性、背景小、线性范围宽、结构简单、操作方便、使用安全等要求。
目前可用的激发光源有火焰、电弧、火花、等离子体、辉光、激光光源等。
直流电弧光源是通过两个电极(上电极和下电极)间产生的电弧,将下电极上的样品蒸发、原子化、激发。
直流电弧设备简单,电极温度较高,蒸发能力强,灵敏度高,但电弧温度较低,激发能力差,因此适用于易激发、熔点较高的元素的定性分析。
由于其产生的谱线容易发生自吸和自蚀,故不适于高含量元素的分析。
而且直流电弧的稳定性较差,不适于定量分析。
交流电弧电流具有脉冲性,其电流密度比直流电弧大,弧温较高,激发能力较强,甚至可产生一些离子线。
但交流电弧放电的间歇性使电极温度比直流电弧略低,因而蒸发能力较差,适用于金属和合金中低含量元素的分析。
由于交流电弧的电极上无高温斑点,温度分布较均匀,蒸发和激发的稳定性比直流电弧好,分析的精密度较高,有利于定量分析。
电感耦合高频等离子体(ICP)是二十世纪60年代提出,70年代获得迅速发展的一种新型的激发光源。
等离子体在总体上是一种呈中性的气体,由离子、电子、中性原子和分子所组成,其正负电荷密度几乎相等。
原子发射光谱实验步骤
原子发射光谱实验是一种用于研究原子结构的实验方法,它可以帮助我们了解
原子的结构和性质。
下面介绍原子发射光谱实验的步骤:
1.准备实验:首先,准备实验所需的设备,包括原子发射光谱仪、激光器、探
测器等。
2.样品准备:将样品放入原子发射光谱仪中,并将激光器指向样品。
3.调节参数:调节激光器的功率和波长,以及探测器的灵敏度,以获得最佳的
实验效果。
4.观察结果:观察激光器照射样品后,探测器检测到的光谱结果,以获得原子
的结构信息。
5.数据分析:对获得的原子发射光谱数据进行分析,以获得原子的结构信息。
6.结论:根据实验结果,得出有关原子结构的结论。
以上就是原子发射光谱实验的步骤。
原子发射光谱实验是一种重要的实验方法,它可以帮助我们更好地了解原子的结构和性质,为科学研究提供重要的参考。
原子发射光谱法的原理
原子发射光谱法(atomic emission spectroscopy)是一种用于分析物质的方法,根据原子在能级跃迁时释放出的特定波长的光谱进行分析。
该方法的原理基于原子在受到能量激发后跃迁到较低能级时会释放出特定波长的光,这些波长是由原子的电子结构决定的。
在原子发射光谱法中,首先需要将待分析的样品转化为气体态中的离子状态,这可以通过气化、电离或燃烧等方法实现。
然后,将激发源(如火焰、等离子体或光源)作用于样品,提供足够的能量使得样品中的原子处于激发态。
当原子从激发态返回到基态时,会通过发射光子的方式释放出能量。
这些发射的光子会落在特定的波长上,形成不同元素的特征光谱。
为了分析样品中的元素组成,首先需要确定每个元素特定的激发和发射波长。
这可以通过先用标准物质进行校准,然后通过比较其发射光谱与待分析样品的发射光谱来确定。
当待分析样品中含有多个元素时,可以通过利用光谱仪对发射光进行分光和检测,然后与已知的发射光谱进行比较,从而确定每个元素的存在和浓度。
原子发射光谱法具有许多优点,包括高灵敏度、多元素分析能力、宽线性范围、简单操作和相对低成本。
它被广泛应用于制药、环境监测、冶金、食品安全等领域,并为化学分析提供了一种快速、准确和可靠的方法。
原子发射光谱法-摄谱和译谱一、实验目的和要求1、熟悉光谱定性分析的原理;2、了解石英棱镜摄谱仪的工作原理和基本结构;3、学习电极的制作摄谱仪的使用方法及暗室处理技术;4、学会用标准铁光谱比较法定性判断试样中所含未知元素的分析方法;5、根据特征谱线的强度及最后线出现的情况对元素含量进行粗略的估计;6、掌握映谱仪的原理和使用方法。
二、实验内容和原理1、摄谱原子在受到一定能量的激发后,其电子在由高能级向低能级跃迁时将能量以光辐射的形式释放,各种元素因其原子结构的不同而有不同的能级,因此每一种元素的原子都只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。
一个元素可以有许多条谱线,各条谱线的强度也不同。
在进行光谱定性分析时,并不需要找出元素的所有谱线,一般只要检查它的几条(2~3条)灵敏线或最后线,根据最后线(灵敏线)是否出现,它们的强度比是否与谱线所表示的相符,就可以判断该元素存在与否。
经典电光源的试样处理:1)固体金属及合金等导电材料的处理棒状金属表面用金刚砂纸除氧化层后,可直接激发。
碎金属屑用酸或丙酮洗去表面污物,烘干后磨成粉末状后,最好以1:1与碳粉混合,在玛瑙研钵中磨匀后装入下电极孔内再激发。
2)非导体固体试样及植物试样非金属氧化物、陶瓷、土壤、植物等试样经灼烧处理后,磨细,加入缓冲剂及内标,置于石墨电极孔中用电弧激发。
3)液体试样处理液体样品经稀释后,滴到用液体石蜡涂过的平头石墨电极上,在红外灯下烘干后进行光谱分析。
摄谱法是用感光板记录光谱。
将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。
然后用影谱仪观察谱线位置及大致强度,进行光谱定性及半定量分析。
用测微光度计测量谱线的黑度,进行光谱定量分析。
用发射光谱进行定性分析通常采用在同一块感光板上并列地摄取试样光谱和铁光谱,然后借助光谱投影仪使摄得的铁光谱与“元素标准光谱图”上的铁光谱重合,从“元素标准光谱图”上标记的谱线来辨认摄得的试样谱线。