专题复习:滑块-木板问题
- 格式:ppt
- 大小:1.20 MB
- 文档页数:22
滑块和木板问题(带答案)专题滑块与木板一应用力和运动的观点处理(即应用牛顿运动定律)典型思维方法:整体法与隔离法注意运动的相对性【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。
【例2】如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2,(1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围.(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间.【例3】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平力F0拉小滑块,使小滑块与木板以相同的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F拉小滑块向木板的右端运动,在t=0.5s内使滑块从木板右端滑出,力F应为多大?(3)按第(2)问的力F的作用,在小滑块刚刚从长木板右端滑出时,滑块和木板滑行的距离各为多少?(设m与M之间的最大静摩擦力与它们之间的滑动摩擦力大小相等)。
(取g=10m/s2).【例4】如图所示,在光滑的桌面上叠放着一质量为m A =2.0kg 的薄木板A 和质量为m B =3 kg 的金属块B .A 的长度L =2.0m .B 上有轻线绕过定滑轮与质量为m C =1.0 kg 的物块C 相连.B 与A 之间的滑动摩擦因数 µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B 位于A 的左端(如图),然后放手,求经过多长时间t 后 B 从 A 的右端脱离(设 A 的右端距滑轮足够远)(取g =10m/s 2).例1解析(1)m 与M 刚要发生相对滑动的临界条件:①要滑动:m 与M 间的静摩擦力达到最大静摩擦力;②未滑动:此时m 与M 加速度仍相同。
第5课时专题强化:“滑块—木板”模型中的动力学问题目标要求 1.掌握“滑块—木板”模型的运动及受力特点。
2.能正确运用动力学观点处理“滑块—木板”模型问题。
1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动,滑块和木板具有不同的加速度。
2.模型构建(1)隔离法的应用:对滑块和木板分别进行受力分析和运动过程分析。
(2)对滑块和木板分别列动力学方程和运动学方程。
(3)明确滑块和木板间的位移关系如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δs =s1-s2=L(板长);滑块和木板反向运动时,位移之和Δs=s2+s1=L。
3.解题关键(1)摩擦力的分析判断:由滑块与木板的相对运动来判断“板块”间的摩擦力方向。
(2)挖掘“v物=v板”临界条件的拓展含义摩擦力突变的临界条件:当v物=v板时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动)。
①滑块恰好不滑离木板的条件:滑块运动到木板的一端时,v物=v板;②木板最短的条件:当v物=v板时滑块恰好滑到木板的一端。
考点一水平面上的板块问题例1如图所示,在光滑的水平面上有一足够长且质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,g取10 m/s2。
(1)若要使小物块和木板间发生相对滑动,拉力F不小于什么值?(2)现用F=14 N的水平恒力向右拉长木板,经时间t=1 s撤去水平恒力F,则:①在F的作用下,长木板的加速度为多大?②刚撤去F时,小物块离长木板右端多远?③最终长木板与小物块一起以多大的速度匀速运动?④最终小物块离长木板右端多远?________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例2(多选)如图甲所示,长木板B静止在光滑水平地面上,在t=0时刻,可视为质点、质量为1 kg的物块A在水平外力F作用下,从长木板的左端从静止开始运动,1 s后撤去外力F,物块A、长木板B的速度—时间图像如图乙所示,g=10 m/s2,则下列说法正确的是()A.长木板的最小长度为2 mB.A、B间的动摩擦因数是0.1C.长木板的质量为0.5 kgD.外力F的大小为4 N例3(2024·广东佛山市联考)如图所示,质量均为m=1 kg的物块A和B叠放在水平地面上,左边缘对齐。
关于 滑块—木板相对滑动 的问题判断滑块与长木板是否发生相对滑动是解决这类问题的一个难点,通常采用整体法、隔离法和假设法等。
往往先假设二者相对静止,由牛顿第二定律求出它们之间的摩擦力f ,并与最大静摩擦力f m 实行比较分析。
若f<f m ,则不会发生相对滑动;反之,将发生相对滑动。
从运动学角度看,滑块与长木板的速度和加速度不等,则会发生相对滑动。
(一)无外力F 作用于长木板或滑块(水平面光滑)1.质量为M 木板静置于光滑水平面上,一质量为m 的滑块以水平速度0v 从左端滑上木板,m 与M 之间的动摩擦因数为 ,求:(1)假如木板充足长,求共同速度和所用的时间 (2)要使m 不掉下,M 至少要多长2.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1, g 取10m/s 2。
求两木板的最后速度。
3.在光滑水平面上,有一质量为M=3kg 的木板B 和质量为m=1kg 的物块A ,都以v=4m/s 的初速朝相反的方向运动,它们间有摩擦,木板充足长,当木板速度为2.4m/s 时,物块的运动情况是( )A .做加速运动 B.做减速运动 C .做匀速运动 D.以上都有可能4、对上题作出A 、B 运动的V-t 图象(分别以向右和向左为正向作图),并求最终速度及所经历的时间5、若使A 不从B 上掉下,求木板B 的最小长度。
(至少用两种方法求解)6、若M=1kg 的木板B 和质量为m=3kg 的物块A ,以向右为正向,作出A 、B 运动的V-t 图象v 0A B(二)无外力F作用于长木板或滑块(水平面粗糙)水平向1.一充足长的木板静止在粗糙的水平面上,t=0时刻滑块从板的左端以速度v右滑行,木板与滑块间存有摩擦,且最大静摩擦力等于滑动摩擦力.滑块的v-t图象可能是图乙中的( )2.如图甲所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
一.必备知识精讲模型图示模型特点(1)假设滑块未从木板上滑下,当两者速度相等时木块或木板的速度最大,两者的相对位移取得极值(完全非弹性碰撞拓展模型)(2)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(3)根据能量守恒,系统损失的动能ΔE k=Mm+ME k0,可以看出,滑块的质量越小,木板的质量越大,动能损失越多(4)该类问题既可以从动量、能量角度求解,相当于非弹性碰撞拓展模型,也可以从力和运动的角度借助图示求解二.典型例题精讲:题型一:图像题例1:. 如下图,足够长的木板Q放在光滑水平面上,在其左端有一可视为质点的物块P,P、Q间接触面粗糙。
现给P向右的速率v P,给Q向左的速率v Q,取向右为速度的正方向,不计空气阻力,那么运动过程中P、Q的速度随时间变化的图像可能正确的选项是()答案ABC解析开始时,木板和物块均在摩擦力作用下做匀减速运动,两者最终到达共同速度,以向右为正方向,P、Q组成的系统动量守恒,根据动量守恒定律得m P v P-m Q v Q=(m P+m Q)v;假设m P v P=m Q v Q,那么v=0,图像如图A所示;假设m P v P>m Q v Q,那么v>0,图像如图B所示;假设m P v P<m Q v Q,那么v<0,图像如图C所示。
故A、B、C正确,D错误。
题型二:计算题例2:如下图,在光滑水平面上有B 、C 两个木板,B 的上外表光滑,C 的上外表粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上外表等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L ,不计空气阻力.求:(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力F f 大小;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .答案 (1)56v (2)m v 23L (3)3L 2v解析 (1)设水平向右为正方向,B 、C 碰撞过程中动量守恒:2m v -m v =(2m +m )v 1解得v 1=v 3A 滑到C 上,A 、C 动量守恒:3m v +m v 1=(3m +m )v 2解得v 2=56v ; (2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =12(3m )v 2+12m v 12-12(3m +m )v 22 Q =F f · L 2联立解得F f =m v 23L; (3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =m v 2-m v 1解得t =3L 2v. 三.举一反三,稳固练习1.如下图,甲图表示光滑平台上,物体A 以初速度v 0滑到上外表粗糙的水平小车B 上,车与水平面间的动摩擦因数不计,乙图为物体A 与小车B 的v -t 图象,由此可知 ( )A .小车上外表长度B .物体A 与小车B 的质量之比C .物体A 与小车B 上外表间的动摩擦因数D .小车B 获得的动能答案:BC[解析] 由图象可知,A 、B 最终以共同速度v 1匀速运动,不能确定小车上外表长度,故A 错误;由动量守恒定律得m A v 0=(m A +m B )v 1,故可以确定物体A 与小车B 的质量之比,故B正确;由图象可知A 相对小车B 的位移Δx =12v 0t 1,根据动能定理得-μm A g Δx =12(m A +m B )v 21-12m A v 20,根据B 项中求得的质量关系,可以解出动摩擦因数,故C 正确;由于小车B 的质量无法求出,故不能确定小车B 获得的动能,故D 错误。
微专题16 牛顿运动定律应用之“滑块—木板模型”问题【核心要点提示】1.问题的特点滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.2.常见的两种位移关系(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.【核心方法点拨】此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.【微专题训练】类型一:滑块-木板间有摩擦,木板与地面间无摩擦【例题1】(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A =6 kg,m B=2 kg.A、B间动摩擦因数μ=0.2.A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)()A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止【解析】假设细线不断裂,则当细线拉力增大到某一值A物体会相对于B物体开始滑动,此时A、B之间达到最大静摩擦力.以B为研究对象,最大静摩擦力产生加速度,由牛顿第二定律得:μm A g=m B a,解得a=6 m/s2以整体为研究对象,由牛顿第二定律得:F m=(m A+m B)a=48 N即当绳子拉力达到48 N时两物体才开始相对滑动,所以A、B错,D 正确.当拉力F=16 N时,由F=(m A+m B)a解得a=2 m/s2,再由F f=m B a得F f=4 N,故C正确.【答案】CD【变式1-1】如图所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,最大静摩擦力等于滑动摩擦力,下列选项可能正确的是()A.a m=2 m/s2,a M=1 m/s2B.a m=1 m/s2,a M=2 m/s2C.a m=2 m/s2,a M=4 m/s2D.a m=3 m/s2,a M=5 m/s2【解析】若物块与小车保持相对静止一起运动,设加速度为a,对系统受力分析,由牛顿第二定律可得:F=(M+m)a,隔离小物块受力分析,二者间的摩擦力F f为静摩擦力,且F f≤μmg,由牛顿第二定律可得:F f=ma,联立可得:a m=a M=a≤μg=2 m/s2.若物块与小车间发生了相对运动,二者间的摩擦力F f为滑动摩擦力,且a m<a M,隔离小物块受力分析,如图所示,由牛顿第二定律可得:F f=μmg=ma m,可得:a m=2 m/s2,选项C正确,选项A、B、D错误.【答案】C【变式1-2】如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F =kt,其中k为已知常数.设物体A、B之间的滑动摩擦力大小等于最大静摩擦力F f,且A、B的质量相等,则下列可以定性描述长木板B运动的v-t图象是()【解析】A、B相对滑动之前加速度相同,由整体法可得:F=2ma,当A、B间刚好发生相对滑动时,对木板有F f=ma,故此时F=2F f=kt,t=2F fk,之后木板做匀加速直线运动,故只有B项正确.【答案】B【例题2】如图所示,在光滑的水平面上有一长为0.64 m、质量为4 kg的木板A,在木板的左端有一质量为2 kg的小物体B,A、B之间的动摩擦因数为μ=0.2。
木板滑块专题第一类:力学问题模型特点:两个及两个以上的物体叠放,并且在摩擦力的相互作用下发生相对滑动.建模指导解决此类问题的基本思路:(1) 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2) 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程,特别注意滑块和木板的位移都是相对于地面的位移;(3) 审题画出运动过程的草图建立正确的物理情景帮助自己理解过程。
【例1】木板M 静止在光滑水平面上,木板上放着一个小滑块m ,与木板之间的动摩擦因数μ,为了使得m 能从M 上滑落下来,求下列各种情况下力F 的大小范围。
(1) (2)【例2】如图1所示,光滑水平面上放置质量分别为m 、2m 的物块A 和木板B ,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,求拉力F 的最大值。
【变式1】 上例中若拉力F 作用在A 上呢?如图2所示。
【变式2】在变式1的基础上再改为:B 与水平面间的动摩擦因数为1/6*μ(认为最大静摩擦力等于滑动摩擦力),使A 、B 以同一加速度运动,求拉力F 的最大值。
F M m m F M【例3】如图所示,木块A 质量为1kg ,木块B 质量为2kg ,叠放在水平地面上,AB 之间最大静摩擦力为5N ,B 与地面之间摩擦系数为0.1,今用水平力F 作用于A ,保持AB相对静止的条件是F 不超过 ?N 。
(g m s 102/)【例4】如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。
用水平力F 拉B ,当拉力大小分别是F=10 N 和F=20 N 时,A 、B 的加速度各多大?第二类:运动学问题【例题9】 如图所示,一质量为m =2kg 、初速度为6m/s 的小滑块(可视为质点),向右滑上一质量为M =4kg 的静止在光滑水平面上足够长的滑板,m 、M 间动摩擦因数为μ=0.2。