大学物理教案上
- 格式:docx
- 大小:3.94 MB
- 文档页数:88
教学目标:1. 理解并掌握物理学的基本概念、原理和定律;2. 培养学生运用物理知识解决实际问题的能力;3. 培养学生的实验操作技能和科学探究精神。
教学对象:大学一年级物理课程学生教学课时:16课时教学安排:第一课时:绪论1. 介绍物理学的发展历程及其在现代社会中的应用;2. 阐述物理学的基本概念、原理和定律;3. 引导学生了解物理学的研究方法。
第二课时:运动学1. 介绍运动学的基本概念,如位移、速度、加速度等;2. 讲解匀速直线运动、匀变速直线运动的规律;3. 引导学生掌握运动学公式及其应用。
第三课时:动力学1. 介绍牛顿运动定律及其应用;2. 讲解牛顿运动定律的适用条件和局限性;3. 引导学生运用牛顿运动定律解决实际问题。
第四课时:能量守恒定律1. 介绍能量守恒定律的基本概念;2. 讲解能量守恒定律的应用;3. 引导学生运用能量守恒定律解决实际问题。
第五课时:热力学1. 介绍热力学的基本概念,如温度、热力学第一定律等;2. 讲解热力学第一定律的应用;3. 引导学生运用热力学第一定律解决实际问题。
第六课时:波动光学1. 介绍波动光学的基本概念,如光的干涉、衍射等;2. 讲解波动光学的基本原理;3. 引导学生运用波动光学解决实际问题。
第七课时:电磁学1. 介绍电磁学的基本概念,如电荷、电场、磁场等;2. 讲解电磁场的基本原理;3. 引导学生运用电磁学解决实际问题。
第八课时:量子力学1. 介绍量子力学的基本概念,如波粒二象性、不确定性原理等;2. 讲解量子力学的基本原理;3. 引导学生运用量子力学解决实际问题。
第九课时:相对论1. 介绍相对论的基本概念,如狭义相对论、广义相对论等;2. 讲解相对论的基本原理;3. 引导学生运用相对论解决实际问题。
第十课时:现代物理1. 介绍现代物理的基本概念,如量子场论、宇宙学等;2. 讲解现代物理的基本原理;3. 引导学生了解现代物理的发展趋势。
第十一课时:物理实验1. 介绍物理实验的基本原理和方法;2. 讲解实验数据的处理和分析方法;3. 引导学生进行物理实验,培养实验操作技能。
教学目标:1. 理解波动光学的基本原理,包括光的干涉、衍射和偏振等现象。
2. 掌握使用双缝干涉实验验证光的波动性。
3. 学会使用偏振片测量光的偏振状态。
4. 培养学生实验操作能力、数据分析能力和科学探究精神。
教学重点:1. 双缝干涉实验原理及现象。
2. 偏振实验原理及测量方法。
教学难点:1. 实验误差的来源及减小方法。
2. 实验数据的处理和分析。
教学准备:1. 实验器材:双缝干涉装置、光源、屏幕、偏振片、测量工具等。
2. 教学课件:波动光学基本原理介绍。
3. 教学视频:双缝干涉实验操作演示。
教学过程:一、新课导入1. 通过展示自然界中光的干涉现象(如肥皂泡、油膜等),激发学生学习兴趣。
2. 提问:为什么会产生这些现象?它们与光的波动性有何关系?二、基本原理讲解1. 讲解光的干涉、衍射和偏振等现象的基本原理。
2. 介绍双缝干涉实验和偏振实验的原理。
三、实验操作演示1. 演示双缝干涉实验的操作步骤,包括光源调整、双缝间距测量、屏幕调整等。
2. 演示偏振实验的操作步骤,包括偏振片调整、光强测量等。
四、学生实验1. 学生分组进行双缝干涉实验,观察干涉条纹,测量双缝间距和条纹间距。
2. 学生分组进行偏振实验,观察偏振现象,测量光强变化。
五、数据处理与分析1. 学生对实验数据进行记录和整理。
2. 指导学生使用相关公式计算实验结果,分析误差来源。
六、总结与反思1. 学生总结实验过程中的收获和不足。
2. 教师点评实验结果,指出学生的优点和需要改进的地方。
教学评价:1. 实验操作是否规范。
2. 实验数据记录是否准确。
3. 实验结果分析是否合理。
4. 学生对波动光学原理的理解程度。
教学延伸:1. 介绍波动光学的应用领域,如光学仪器、光纤通信等。
2. 讨论波动光学与量子力学的关系。
字数:530字。
课时:2课时教学目标:1. 让学生理解静电场的基本概念,掌握静电场的基本性质。
2. 使学生熟练运用库仑定律、电场叠加原理等基本公式,解决静电场中的实际问题。
3. 培养学生的逻辑思维能力和实验操作能力。
教学重点:1. 静电场的基本概念和性质。
2. 库仑定律、电场叠加原理的应用。
教学难点:1. 静电场中电势的计算。
2. 静电场中的电势能和能量守恒。
教学过程:一、导入新课1. 复习静电荷、电场、电势等基本概念。
2. 引出静电场的基本性质:静电场是保守场,有源场,无旋场。
二、讲授新课1. 静电场的基本概念:静电场是指电荷在静止时所激发的电场。
静电场具有以下基本性质:(1)静电场是保守场:静电场力做功只与始末位置有关,与路径无关。
(2)静电场是有源场:静电场的电场线起于正电荷或无穷远,止于负电荷或无穷远。
(3)静电场是无旋场:静电场中沿任意闭合路径移动电荷,电场力所做的功都为零。
2. 库仑定律:描述两个点电荷之间的相互作用力。
公式为:F = k q1 q2 / r^2,其中,F为作用力,k为静电力常量,q1、q2为两点电荷的电荷量,r为两点电荷中心点连线的距离。
3. 电场叠加原理:多个电荷产生的电场,可以看作是各个电荷单独产生的电场的矢量和。
4. 静电场中的电势:电势是描述电场中某一点的电势能的物理量。
电势的计算公式为:V = W / q,其中,V为电势,W为电场力所做的功,q为电荷量。
5. 静电场中的电势能和能量守恒:静电场中的电势能等于电荷在电场中所具有的势能。
静电场中的能量守恒定律:静电场中的总能量等于静电场中的电势能。
三、课堂练习1. 计算两个点电荷之间的作用力。
2. 求解静电场中的电势。
3. 分析静电场中的电势能和能量守恒。
四、课堂小结1. 回顾静电场的基本概念和性质。
2. 强调库仑定律、电场叠加原理的应用。
3. 总结静电场中的电势能和能量守恒。
五、作业布置1. 复习本节课所学内容,完成课后习题。
教案标题:大学物理导论教学目标:1. 了解大学物理的基本概念、学科范畴和研究方法。
2. 掌握物理学的基本分支和重要研究领域。
3. 理解物理学的应用价值和它在现代科技发展中的地位。
教学内容:1. 大学物理的概念与学科范畴2. 物理学的基本分支3. 物理学的研究方法4. 物理学的应用价值与现代科技发展教学准备:1. 教材或教学资源:《大学物理导论》等相关教材或教学资源。
2. 教学设施:投影仪、白板、粉笔等。
教学过程:一、导入(5分钟)1. 引导学生思考:什么是物理?物理学研究什么?2. 学生分享自己的理解和观点。
二、大学物理的概念与学科范畴(15分钟)1. 介绍大学物理的基本概念:物理量的定义、单位制等。
2. 讲解大学物理的学科范畴:经典物理和现代物理。
3. 讨论物理学与其他学科的关系。
三、物理学的基本分支(20分钟)1. 力学:牛顿定律、动量守恒、能量守恒等。
2. 热学:热力学定律、热传导、热能转换等。
3. 电磁学:库仑定律、法拉第电磁感应定律、麦克斯韦方程组等。
4. 光学:光的传播、折射、干涉、衍射等。
5. 原子物理学:原子的结构、能级、光谱等。
6. 量子力学:波粒二象性、不确定性原理、薛定谔方程等。
7. 凝聚态物理学:晶体结构、半导体、超导体等。
四、物理学的研究方法(15分钟)1. 实验方法:实验设计、数据采集、误差分析等。
2. 理论方法:数学模型、物理定律、计算方法等。
3. 科学思维方法:逻辑推理、批判性思维、创新意识等。
五、物理学的应用价值与现代科技发展(15分钟)1. 讨论物理学在现代科技中的应用:电子技术、能源技术、航空航天等。
2. 分析物理学在解决实际问题中的作用:环境保护、疾病诊断、灾害预测等。
3. 探讨物理学在未来的发展趋势和挑战。
六、总结与反思(5分钟)1. 学生总结本节课的收获和认识。
2. 教师强调物理学的重要性和学习方法。
教学评价:1. 课堂参与度:学生发言、提问等。
2. 作业完成情况:课后练习、思考题等。
课时:2课时教学目标:1. 理解牛顿运动定律的物理意义和适用范围。
2. 掌握牛顿运动定律的数学表达式。
3. 能够运用牛顿运动定律解决实际问题。
教学重点:1. 牛顿运动定律的物理意义和适用范围。
2. 牛顿运动定律的数学表达式。
教学难点:1. 牛顿运动定律的应用。
2. 复杂运动问题中牛顿运动定律的应用。
教学过程:一、导入1. 通过回顾初中物理中的运动学知识,引导学生思考物体运动状态改变的原因。
2. 提出问题:物体运动状态改变的原因是什么?二、新课讲授1. 牛顿运动定律的物理意义- 通过实验和观察,说明物体运动状态改变的原因是受到力的作用。
- 引入牛顿运动定律的概念,说明牛顿运动定律描述了物体运动状态改变与受力之间的关系。
2. 牛顿运动定律的数学表达式- 牛顿第一定律:物体在没有受到外力作用时,保持静止状态或匀速直线运动状态。
- 牛顿第二定律:物体的加速度与作用在它上面的合外力成正比,与它的质量成反比,加速度的方向与合外力的方向相同。
- 牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等、方向相反。
三、课堂练习1. 分析一个简单的物理问题,运用牛顿运动定律求解。
2. 通过小组讨论,解决一个复杂运动问题。
四、课堂小结1. 回顾牛顿运动定律的物理意义和数学表达式。
2. 强调牛顿运动定律的应用。
五、课后作业1. 完成课后习题,巩固牛顿运动定律的知识。
2. 查阅资料,了解牛顿运动定律在工程中的应用。
教学反思:1. 在新课讲授过程中,注重引导学生思考,激发学生的学习兴趣。
2. 通过课堂练习,提高学生对牛顿运动定律的理解和应用能力。
3. 课后作业的设计,有助于巩固学生的知识,提高学生的自主学习能力。
1三、坐标系为了定量描述物体的运动,还需要在参考系上建立适当的几何框架即坐标系。
常用的有直角坐标系、极坐标系、自然坐标系、球坐标系等。
四、物理模型——质点实际物体都有大小和形状,一般说来,运动情况很复杂,但是,如果物体的大小和形状在所研究的问题中不起作用或作用很小,就可以忽略其大小和形状,而把它抽象为一个只有质量的几何点—质点。
应用质点模型的条件为:(1)当物体运动的空间范围r 远大于物体自身线度l 时; (2)物体只作平动时。
§1.2 位置矢量 位移 速度 加速度一、描述质点运动的物理量1、位置矢量由坐标原点引向考察点的矢量,简称位矢,用r 表示。
在直角坐标系中为 r = x i + y j + z k ,r 222z y x ++=;r 的方向余弦是r xcos =α, r ycos =β,rzcos =γ。
在平面极坐标系中在自然坐标系中 r = r (s )。
运动方程描写质点的位置随时间变化的函数关系式称为运动方程。
记为x = x (t ),y = y (t ),z = z (t ) r = r (t ), s = s (t )。
例1: 如质点作圆周运动时,有 x = cos r t ω,y =sin r t ω消去时间t ,就得轨道方程 222x y r +=。
2、位移和路程位移r ∆r = r r 0,vYx rt ω 0y 例1-1 图(1)定义:12rrr-=∆,注意:(1)增量的模r∆与模的增量r∆不是同一个量;(2)位移在直角坐标系中的表示式为=∆r xi∆+y∆j+z∆k。
路程s∆:t∆时间内质点在空间内实际运行的路径距离位移和路程的比较与联系:(1)不同处..r;.r.absc s⎧⎪∆--⎪⎨∆--⎪⎪∆≠∆⎩矢量与标量,仅由始未位置决定与轨道形状无关与轨道形状及往返次数有关;在一般情况下(2)联系在t∆→0时,d=r d s,但仍然d d r≠r。
3、速度平均速度trv∆∆=与平均速率tsv∆∆=(1)、在一般情况下平均速度大小不等于平均速率vv≠.(2)、v在直角坐标系中的表示式x y zt t t∆∆∆∆∆∆=++v i j k瞬时速度dlimt dtr rvt∆∆∆→==v v与瞬时速率dlimdts svt t∆∆∆→==的关系:(1)、瞬时速度大小d dd dSvt t===rv,等于瞬时速率dtdsv=。
教案标题:大学物理导论教学目标:1. 了解大学物理的基本概念、研究领域和应用范围;2. 掌握物理学的基本原理和方法;3. 培养学生的科学思维和创新能力。
教学内容:1. 大学物理的基本概念;2. 物理学的基本原理;3. 物理学的研究领域;4. 物理学在实际应用中的例子;5. 科学方法在物理学中的应用。
教学过程:一、引入(10分钟)1. 通过简单的日常生活中的例子,引出物理学的概念,如力、能量、速度等;2. 提问学生对物理学的了解和认识,激发学生的兴趣和好奇心。
二、大学物理的基本概念(20分钟)1. 介绍大学物理的基本概念,如质量、长度、时间、温度等;2. 讲解物理学的基本单位,如国际单位制(SI)等;3. 强调物理学的基本原理,如牛顿三定律、能量守恒定律等。
三、物理学的基本原理(20分钟)1. 讲解物理学的基本原理,如牛顿三定律、动量守恒定律、能量守恒定律等;2. 通过示例和问题,引导学生理解和掌握这些原理;3. 强调科学方法在物理学中的应用,如实验、观察、推理等。
四、物理学的研究领域(20分钟)1. 介绍物理学的研究领域,如力学、热学、电磁学、光学、量子力学等;2. 讲解各个领域的研究内容和重要发现;3. 引导学生了解物理学的前沿问题和挑战。
五、物理学在实际应用中的例子(20分钟)1. 通过具体的例子,讲解物理学在日常生活和技术中的应用,如手机、空调、电动机等;2. 引导学生认识到物理学对现代社会的重要性;3. 激发学生对物理学的兴趣和热情。
六、总结和展望(10分钟)1. 总结本节课的重点内容,强调学生需要掌握的基本概念和原理;2. 展望物理学的发展前景,鼓励学生积极学习和探索;3. 回答学生的疑问和反馈。
教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生的参与度和积极性;3. 学生对基本概念和原理的理解和掌握程度;4. 学生对物理学应用的认识和兴趣。
教学资源:1. 教学PPT或黑板;2. 教材或参考书籍;3. 日常生活中的例子和实例;4. 网络资源和相关视频。
教学目标:1. 让学生掌握电磁学的基本概念和基本原理。
2. 培养学生的实验操作能力和科学思维能力。
3. 提高学生的综合素质,为后续课程的学习打下基础。
教学重点:1. 电磁学的基本概念和基本原理。
2. 电磁场的计算和应用。
3. 电磁学实验操作。
教学难点:1. 复杂电磁场问题的计算。
2. 电磁学实验数据的处理和分析。
教学过程:一、导入1. 通过实际生活中的电磁现象,激发学生的学习兴趣。
2. 介绍电磁学在科技领域的应用,让学生认识到学习电磁学的重要性。
二、基本概念和基本原理1. 介绍电荷、电场、磁场等基本概念。
2. 讲解库仑定律、法拉第电磁感应定律等基本原理。
3. 通过实例讲解电磁学的基本规律。
三、电磁场的计算和应用1. 讲解电磁场的计算方法,如高斯定理、安培环路定理等。
2. 通过实例讲解电磁场的应用,如电磁场在通信、医疗、能源等领域的应用。
四、电磁学实验操作1. 介绍电磁学实验的基本操作步骤。
2. 讲解电磁学实验仪器的使用方法。
3. 通过实验操作,让学生掌握电磁学实验的基本技能。
五、课堂小结1. 回顾本节课所学的电磁学基本概念、基本原理和实验操作。
2. 强调电磁学在科技领域的重要性。
六、课后作业1. 完成课后习题,巩固所学知识。
2. 预习下一节课的内容。
教学评价:1. 通过课堂提问、课堂讨论等方式,了解学生对电磁学知识的掌握程度。
2. 通过课后作业和实验报告,评估学生的实践能力和创新能力。
3. 结合学生的课堂表现、作业完成情况、实验报告等,对学生的学习情况进行综合评价。
教学资源:1. 教材:《大学物理》电磁学部分。
2. 教学课件:电磁学基本概念、基本原理、实验操作等内容。
3. 实验器材:电磁学实验装置。
教学反思:1. 关注学生的学习需求,及时调整教学方法和手段。
2. 注重培养学生的实践能力和创新能力。
3. 加强与学生的沟通交流,了解学生的学习状况,提高教学效果。
课时:2课时教材:《大学物理学(第2版)(上册)》袁艳红教学目标:1. 使学生掌握牛顿运动定律的基本概念、原理及其应用;2. 培养学生运用牛顿运动定律分析实际问题的能力;3. 增强学生对物理学的兴趣,提高学生的创新意识。
教学重点:1. 牛顿运动定律的基本概念和原理;2. 牛顿运动定律的应用。
教学难点:1. 牛顿运动定律的适用范围;2. 牛顿运动定律与其他物理定律的联系。
教学过程:一、导入新课1. 复习上节课所学内容,引导学生回顾牛顿第一定律;2. 引入牛顿第二定律,提出本节课的学习目标。
二、新课讲解1. 牛顿第一定律:讲解惯性的概念,阐述惯性与质量的关系;2. 牛顿第二定律:讲解力的概念,阐述力与加速度的关系,介绍牛顿第二定律的数学表达式;3. 牛顿第三定律:讲解作用力与反作用力的概念,阐述作用力与反作用力的关系;4. 牛顿运动定律的适用范围:讲解牛顿运动定律的适用条件,分析牛顿运动定律的局限性;5. 牛顿运动定律与其他物理定律的联系:介绍牛顿运动定律与牛顿万有引力定律、动量守恒定律等的关系。
三、例题讲解1. 分析一个物体在水平面上受到水平力的作用,求物体的加速度;2. 分析一个物体在竖直方向上受到重力和支持力的作用,求物体的加速度;3. 分析一个物体在水平面上受到摩擦力的作用,求物体的加速度。
四、课堂练习1. 分析一个物体在斜面上受到重力和支持力的作用,求物体的加速度;2. 分析一个物体在空中受到重力的作用,求物体的加速度。
五、总结与反馈1. 总结本节课所学内容,强调牛顿运动定律的重要性;2. 针对课堂练习,给予学生反馈,纠正错误,解答疑问。
教学反思:本节课通过讲解牛顿运动定律的基本概念、原理及其应用,使学生掌握了牛顿运动定律的基本知识,提高了学生运用牛顿运动定律分析实际问题的能力。
在今后的教学中,应注重引导学生联系实际,提高学生的创新能力。
第一章质点运动学§1-1 质点运动的描述一、参照系坐标系质点1、参照系为描述物体运动而选择的参考物体叫参照系。
2、坐标系说明:参照系、坐标系是任意选择的,视处理问题方便而定。
3、质点说明:⑴⑵质点突出了物体两个基本性质1)具有质量2)占有位置⑶物体能否视为质点是有条件的、相对的。
二、位置矢量运动方程轨迹方程位移1、位置矢量定义:由坐标原点到质点所在位置的矢量称为位置矢量(简称位矢或径矢)。
如图1—2,取的是直角坐标系,r为质点P的位置矢量k zj yi xr++=(1-1)位矢大小:222zyxrr++==(1-2)r方向可由方向余弦确定:rx=αcos,ry=βcos,rz=γcos2、运动方程质点的位置坐标与时间的函数关系,称为运动方程。
运动方程⑴矢量式:ktzjtyi txtr)()()()(++=(1-3)⑵标量式:)(t xx=,)(tyy=,)(t zz=(1-4)3、轨迹方程从式(1-4)中消掉t,得出x、y、z之间的关系式。
如平面上运动质点,运动方程为tx=,2ty=,得轨迹方程为2xy=(抛物线)4、位移以平面运动为例,取直角坐标系,如图1—3。
设t、tt∆+时刻质点位矢分别为r、r,则t∆时间间隔内位矢变化为(1-5)称r∆jyyixxrrr)()(121212-+-=-=∆(1-6)大小为讨论:⑴比较r∆与r:二者均为矢量;前者是过程量,后者为瞬时量⑵比较r∆与s∆(A→B路程)二者均为过程量;前者是矢量,后者是标量。
一般情况下sr∆≠∆。
当0→∆t时,sr∆=∆。
⑶什么运动情况下,均有sr∆=∆?三、速度图 1-3图 1-2y图 1-1为了描述质点运动快慢及方向,从而引进速度概念。
1、平均速度如图1-3, 定义: trv ∆∆= (1-7)称v为t t t ∆+-时间间隔内质点的平均速度。
j v i v j t y i t x t r v y x +=∆∆+∆∆=∆∆= (1-8)v方向:同r ∆方向。
说明:v与时间间隔)(t t t ∆+-相对应。
2、瞬时速度v粗略地描述了质点的运动情况。
为了描述质点运动的细节,引进瞬时速度。
定义:dtr d t r v v t t=∆∆==→∆→∆00lim lim 称v为质点在t(1-9)结论j v i v j dtdy i dt dx dt r d v y x +=+== (1-10)式中dt dx v x =,dtdy v y = 。
x v 、y v 分别为v在x 、y 轴方向的速度分量。
v的大小:v 的方向:所在位置的切线向前方向。
v与x 正向轴夹角满足xy v v tg =θ。
3、平均速率与瞬时速率定义:tt t t t s v ∆∆+-=∆∆=内路程(参见图1-3) 称v 为质点在t t t ∆+-时间段内得平均速率。
为了描述运动细节,引进瞬时速率。
定义:dtdst s v v t t =∆∆==→∆→∆00lim lim称v 为t 时刻质点的瞬时速率,简称速率。
当0→∆t 时(参见图1-3),r d r=∆,ds s =∆,有 ds r d =可知: vv==即 (1-11)结论说明:⑴ 比较v 与v:二者均为过程量;前者为标量,后者为矢量。
⑵ 比较v 与v:二者均为瞬时量;前者为标量,后者为矢量。
四、加速度为了描述质点速度变化的快慢,从而引进加速度的概念。
1、平均加速度定义:tv v t v a ∆-=∆∆=12(见图1-4)称a为t t t ∆+-时间间隔内质点的平均加速度。
2、瞬时加速度为了描述质点运动速度变化的细节,引进瞬时加速度。
定义:dt v d t v a a t t=∆∆==→∆→∆00lim lim 称a为质点在t(1-12)结论式中: 22dtx d dt dv a x x ==,22dt y d dt dv a y y ==。
x a 、y a 分别称为a在x 、y 轴上的分量。
a 的大小: 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y xy x a 的方向: a与x 轴正向夹角满足xy a a tg =θ 说明:a 沿v 的极限方向,一般情况下a 与v方向不同(如不计空气阻力的斜上抛运动)。
瞬时量:r ,v ,v ,a综上: 过程量:r ∆,v ,v ,a矢量:r ,r ∆,v ,v ,a ,a标量:s ∆,v ,v五、直线运动质点做直线运动,如图1-5 1、位移0>∆x :r ∆沿+x 轴方向;0<∆x :r∆沿-x 轴方向。
2、速度0>x v ,v 沿+x 轴方向;0<x v ,v沿-x 轴方向。
3、加速度0>x a ,a 沿+x 轴方向;0<x a ,a沿-x 轴方向。
由上可见,一维运动情况下,由x ∆、xv 、x a 的正负就能判断位移、速度和加速度的方向,故一维运动可用标量式代替矢量式。
六、运动的二类问题例1-1:已知一质点的运动方程为j t i t r )2(2-+=(SI ),求:⑴ t=1s 和t=2s 时位矢; ⑵ t=1s 到t=2s 内位移;⑶ t=1s 到t=2s 内质点的平均速度; ⑷ t=1s 和t=2s 时质点的速度; ⑸ t=1s 到t=2s 内的平均加速度;⑹ t=1s 和t=2s 时质点的加速度。
解:⑴ j i r+=21mj i r242-=m⑵ j i r r r3212-=-=∆m12xtA ,图 1-5⑶ j i ji t r v 321232-=--=∆∆=m/s⑷ j t i dtrd v 22-==j i v221-=m/sj i v422-=m/s⑸ j jt v v t v a 213212-=--=∆-=∆∆=m/s 2 ⑹ j dt vd dtr d a 222-===m/s 2例1-2:一质点沿x 轴运动,已知加速度为t a 4=(SI),初始条件为:0=t 时,00=v ,100=x m 。
求:运动方程。
解:取质点为研究对象,由加速度定义有t dtdva 4==(一维可用标量式) 由初始条件有:得: 22t v = 由速度定义得: 由初始条件得: 即10322+=t x m 由上可见,例1-1和例1-2分别属于质点运动学中的第一类和第二类问题。
§1-2圆周运动 一、自然坐标系图2-1中,BAC 为质点轨迹,t 时刻质点P 位于A 点,t e 、n e分别为A 点切向及法向的单位矢量,以A 为原点,t e 切向和n e法向为坐标轴,由此构成的参照系为自然坐标系(可推广到三维)二、圆周运动的切向加速度及法向加速度 1、切向加速度如图1-7,质点做半径为r 的圆周运动,t 时刻,质 点速度t e v v= (2-1)式(2-1)中,v v=为速率。
加速度为dte d v e dt dv dt v d a t t+== (2-2)式(2-2)中,第一项是由质点运动速率变化引起的,方向与t e共线,称该项为切向加速度,记为t t t t e a e dtdv a== (2-3)式(2-3(2-4)t a 为加速度的切向分量。
图 1-7ne结论:切向加速度分量等于速率对时间的一阶导数 。
2、法向加速度式(2-2)中,第二项是由质点运动方向改变引起的。
如图1-8,质点由A 点运动到B 点,有因为OA e t ⊥ ,OB e t ⊥',所以t e 、t e ' 夹角为θd 。
t t t e e e d-=' (见图1-9) 当0→θd 时,有θθd d e e d t t ==。
因为t t e e d ⊥,所以t e d由A 点指向圆心O ,可有式(2-2)中第二项为:该项为矢量,其方向沿半径指向圆心,称为法向加速度,记为n n e rv a2= (2-5)大小为(2-6)式(2-6)中,n 是加速度的法向分量。
结论:法向加速度分量等于速率平方除以曲率半径 。
3、总加速度n t n n t t n t e rv e dt dv e a e a a a a2+=+=+= (2-7)大小:(2-8) 方向:a 与t e4、一般曲线运动圆周运动的切向加速度和法向加速度也适用于一般曲线运动,只要把曲率半径r 看作变量即可。
讨论:⑴ 如图1-10,a总是指向曲线的凹侧。
⑵ 0≡n a 时,∞→r ,质点做直线运动。
此时 ⑶0≠n a 时,r 有限,质点做曲线运动。
此时⑷⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧斜抛平抛竖直下抛抛体运动匀速圆周运动减速圆周运动加速圆周运动圆周运动曲线运动特例 三、圆周运动的角量描述1、角坐标如图1-11,t 时刻质点在A 处,t t ∆+时刻质点在B 处,θ是OA 与x 轴正向夹角,θθ∆+是OB 与x 轴正向夹角,称θ为t 时刻质点角坐标,θ∆为t t t∆+-时间间隔内角坐标增量,称为在时间间隔内的角位移。
2、角速度图 1-11ta 图 1-10υ图 1-8平均角速度:定义: t∆∆=θϖ (2-9) 称ϖ为平均角速度。
平均角速度粗略地描述了物体的运动。
为了描述运动细节,需要引进瞬时角速度。
定义: dtd t t t θθϖω=∆∆==→∆→∆00limlim (2-10)(2-11) 结论说明:角速度是矢量,ω的方向与角位移θd 方向一致。
3、角加速度为了描述角速度变化的快慢,引进角加速度概念。
(1)平均角加速度:设在t t t ∆+-内,质点角速度增量为ω∆定义: t∆∆=ωα (2-12) 称α为t t t ∆+-时间间隔内质点的平均角加速度 瞬时角加速度:定义: 2200lim lim dtd dt d t t t θωωαα==∆∆==→∆→∆ (2-13) 称α为t(2-14)结论 说明:角加速度是矢量,方向沿ωd 方向。
4、线量与角量的关系把物理量v 、v 、a 、t a 、n a等称为线量,ω,α等称为角量。
(1)、v 与ω关系如图2-7,0→dt 时,θrd ds r d ==有dtd r dt r d θ= 即 (2-15) (2)、t 与关系式(2-15即 (2-16)(3)、n a 与ω关系即 (2-17)§1-3本节讨论一个质点的运动,用两个参考系来描述,并得出两个参考系中物理量(如:速度、加速度)之间的数学变换关系。
一、相对位矢设有参照系E 、M ,其上固连的坐标系,如图1-13,二坐标系相应坐标轴平行, M 相对于E 运动。
质点P 相对E 、M 的位矢分别为PE r、PM r ,相对位矢为:'E图 1-12E O PM PE r r r '+= (2-18)结论:P 对E 的位矢等于P 对M 的位矢与'O 对E 的位矢的矢量和。