在今后的学习中会经常用到.
本题容易漏掉直线x=2,用直线的点斜式求方程时,一定要注意斜
率不存在的直线是否符合题意.
题型三
易错辨析
易错点:求点到直线的距离时直线方程没有化成一般式而致错
【例3】 点P(-1,4)到直线3x+4y=2的距离d=
.
错解:d=
|3×(-1)+4×4+2|
32 4 2
= 3. 故填3.
(4)直线方程Ax+By+C=0中A=0或B=0时,公式也成立,但由于直
线是特殊直线(与坐标轴垂直),故也可采用数形结合法求点到直线
的距离.
题型一
求点到直线的距离
【例1】 求点P0(-1,2)到下列直线的距离:
(1)2x+y-10=0;(2)x=2;(3)y-1=0.
解:(1)由点到直线的距离公式,知
d=
.
解析:d=
|2×1-(-5)-2|
2
22 +(-1)
答案: 5
= 5.
理解点到直线的距离公式
剖析:(1)点到直线的距离是直线上的点与直线外一点间的最短距
离.
(2)公式的形式是:分母是直线方程Ax+By+C=0的x,y项系数平方和
的算术平方根,分子是用x0,y0替换直线方程中x,y所得实数的绝对值.
要注意直线方程必须是一般式,若给出其他形式,应先化成一般式
再用公式.例如求P0(x0,y0)到直线y=kx+b的距离,应先把直线方程化
为kx-y+b=0,得
d=
| 0 -0 +|
2 +1
.
(3)当点P0在直线l上时,点到直线的距离为零,公式仍然适用,故应