玻璃如何退火
- 格式:docx
- 大小:12.46 KB
- 文档页数:1
玻璃退火的四个阶段玻璃退火是一种常用的玻璃加工方法,通过加热和冷却的过程,使玻璃获得理想的物理性能和外观效果。
玻璃退火的过程可以分为四个阶段:预热阶段、加热阶段、保温阶段和冷却阶段。
一、预热阶段在玻璃退火过程中,首先需要进行预热阶段。
预热阶段的目的是将玻璃的温度提高到一定程度,以便后续的加热和保温。
预热温度一般较低,通常在300°C左右。
预热时间的长短取决于玻璃的厚度和尺寸,一般为几分钟到几十分钟。
二、加热阶段在预热阶段之后,进入加热阶段。
加热阶段是玻璃退火的关键阶段,也是最耗时的阶段。
在这个阶段,需要将玻璃的温度逐渐提高到所需的退火温度。
退火温度的选择要根据玻璃的种类和要求来确定,一般在500°C到600°C之间。
加热温度的升降速度要适中,过快或过慢都会影响退火效果。
三、保温阶段当玻璃的温度达到所需的退火温度后,进入保温阶段。
保温阶段的目的是让玻璃在退火温度下保持一定的时间,使其内部的应力得到释放,晶体结构得到重组。
保温时间的长短取决于玻璃的厚度和尺寸,一般为几小时到几十小时。
四、冷却阶段在保温阶段结束后,进入冷却阶段。
冷却阶段的目的是将玻璃的温度逐渐降低到室温,使其内部的结构稳定。
冷却速度的选择要根据玻璃的种类和要求来确定,一般需要较慢的冷却速度,以避免因快速冷却导致的玻璃破裂。
玻璃退火的四个阶段相互关联,每个阶段都起到了关键的作用。
预热阶段为加热提供了条件,加热阶段使玻璃达到退火温度,保温阶段使玻璃内部的应力得到释放,冷却阶段使玻璃的结构稳定。
通过这四个阶段的有序进行,玻璃能够获得理想的退火效果。
玻璃退火的过程对于玻璃产品的性能和质量起着至关重要的作用。
通过适当的退火温度和时间,可以减少玻璃内部的应力,提高其抗压强度和耐热性能。
同时,退火还可以改善玻璃的外观效果,使其更加清澈透明。
玻璃退火是一项重要的玻璃加工工艺,通过预热、加热、保温和冷却四个阶段的有序进行,可以使玻璃获得理想的物理性能和外观效果。
高硼硅玻璃的回火工艺流程高硼硅玻璃是一种具有特殊性能的玻璃材料,具有高折射率、低热膨胀系数和优异的抗热震性能。
为了进一步提高其性能,需要通过回火工艺对其进行处理。
高硼硅玻璃的回火工艺流程主要包括以下几个步骤:1. 退火预处理:将高硼硅玻璃制品放入退火炉中,进行退火预处理。
退火温度一般为850左右,退火时间根据需求可在1小时至数小时之间。
退火预处理的目的是消除材料内部的应力,使材料达到相对平衡的状态。
2. 低温回火:将经过退火预处理的高硼硅玻璃制品放入回火炉中,进行低温回火处理。
回火温度一般在500左右,回火时间根据需求可在1小时至数小时之间。
低温回火的目的是进一步消除残留应力,提高材料的抗热震性能。
3. 中温回火:将经过低温回火处理的高硼硅玻璃制品放入回火炉中,进行中温回火处理。
回火温度一般在800左右,回火时间根据需求可在1小时至数小时之间。
中温回火的目的是进一步减小材料内部的残余应力,提高材料的抗热震性能和耐热性能。
4. 高温回火:将经过中温回火处理的高硼硅玻璃制品放入回火炉中,进行高温回火处理。
回火温度一般在1000左右,回火时间根据需求可在1小时至数小时之间。
高温回火的目的是使材料达到最佳的热稳定性和抗热震性能,提高材料的机械强度和耐热性能。
5. 冷却处理:高温回火后,将制品从回火炉中取出,进行冷却处理。
冷却速度一般要适当控制,避免产生额外的应力和裂纹。
可采用自然冷却或者采用特殊的冷却方法,具体根据制品的要求来决定。
通过以上的回火工艺流程,可以有效地改善高硼硅玻璃的性能,提高材料的抗热震性能、耐热性能和机械强度。
同时,回火工艺也可以减小材料内部应力,提高玻璃制品的稳定性和可靠性。
总之,高硼硅玻璃的回火工艺流程是一个复杂而关键的工艺,在制品的制备过程中起到重要的作用。
通过合理的回火工艺流程,可以使高硼硅玻璃材料达到更好的性能指标,满足各类工业和科研领域的需求。
光伏玻璃退火窑工作原理
嘿呀!今天咱们就来好好聊聊光伏玻璃退火窑的工作原理呢!
首先呀,咱们得知道,光伏玻璃退火窑那可是个相当重要的设备哇!
1. 光伏玻璃为啥要退火呢?哎呀呀,这是因为在生产过程中,玻璃经历了高温加工,内部存在着巨大的应力呀!如果不进行退火处理,这玻璃就容易出现破裂、变形等问题呢,那可就糟糕啦!所以说,退火这一步至关重要呀!
2. 那这退火窑是怎么工作的呢?哇!它其实是通过控制温度来实现退火的哟!在退火窑的不同区域,温度是不一样的呢!一开始,温度比较高,然后逐渐降低,形成一个温度梯度呀。
3. 还有哦!退火窑里有专门的加热和冷却装置呢!加热装置负责把温度升高到合适的范围,冷却装置则让温度慢慢降下来,这样就能让玻璃内部的应力慢慢释放出来啦。
4. 哎呀呀!在退火窑工作的时候,还得精确控制气氛呢!比如说,要保持一定的氧气含量、湿度等等,这样才能保证退火的效果达到最佳呀!
5. 而且呢,退火窑的运行速度也是有讲究的哟!速度太快或者太慢都不行,得根据玻璃的特性和生产要求来调整呢。
6. 哇塞!还有还有!为了确保退火的质量,退火窑里还会安装各种监测设备,时刻监控温度、气氛等参数的变化呀!
总之呢,光伏玻璃退火窑的工作原理可复杂啦,但又特别重要!
它就像一个神奇的魔法盒子,能让光伏玻璃变得更加完美,为我们的太阳能发电事业做出巨大的贡献呀!怎么样,朋友们,这下你们对光伏玻璃退火窑的工作原理是不是有了更清楚的了解啦?。
玻璃退火窑:是使玻璃带以一定的速度冷却以降低和均化热应力的热工设备,是玻璃生产过程中必不可少的设备。
玻璃的退火主要是通过风机和阀门控制风的压力和流量的大小,使玻璃在退火窑内按一定的速度进行冷却降温。
按照玻璃退火窑各部分的结构和功能划分,沿玻璃前进方向依次分为封闭区、Ret区和敞开区等区域。
按照玻璃退火工艺要求,封闭区又依次分为A区、B区、C区等;敞开区依次分为D区、F区等。
如图1所示。
封闭区即相对封闭的区域,除了入口和出口外均被玻璃退火窑壳体封闭起来,以便保持玻璃退火环境的相对稳定,详见图2。
图1 玻璃退火窑区划简图图2 玻璃退火窑封闭区横截面简图热量的来源:(1)玻璃散发的热量。
一条玻璃生产线在生产一定产品规格的情况下,玻璃在各区内散发的热量是基本稳定的。
玻璃降温所散发的热量是玻璃退火窑热量的主要来源。
(2)辅助电加热散发的热量。
为了弥补玻璃散发热量的不足和退火窑边部的温度低于中间部位温度而形成的横向温差及玻璃退火窑烤窑升温的需要,在退火窑边部玻璃板上和板下均设置有电加热器(见图1和图2)。
这些电加热器所释放的热量Q电是根据其功率的大小而确定的。
(3)各区之间相互作用的热量:包括相互传导的热量和风传导的热量。
热量的去向:(1)玻璃退火窑壳体吸收的热量。
玻璃退火窑壳体是玻璃退火窑的主要构成体,由耐热钢板、普通钢板、保温棉和槽钢等构成,既起到对玻璃的保温作用,又不可避免地吸收一部分热量,这部分热量最终散发到厂房内。
(2)冷却风吸收的热量。
冷却风是使玻璃退火降温的主要因素,通过风机和阀门控制冷却风的压力和流量的大小。
(3)退火窑辊子吸收的热量。
退火窑辊子是支撑和输送玻璃的重要元件,与玻璃板直接接触并且大部分辊体在退火窑内,因此退火窑辊子也吸收一部分热量。
这些热量一部分用来维持辊子本身的温度,另有一部分散发到厂房内等。
退火窑的保温和密封:(1)退火窑的保温。
退火窑封闭区保温棉的性能是退火窑保温增热的关键,因此应选用质量好、导热系数低的保温棉,并且制作退火窑时应尽量填实、填满。
光伏玻璃退火窑原理
光伏玻璃退火窑的原理如下:
1.玻璃原片生产过程中,熔融玻璃液从池窑中连续流出并漂浮在相对密度大的锡液表面上。
在重力和表面张力的作用下,玻璃液在锡液表面上铺开、摊平,形成上下表面平整的玻璃带,向锡槽尾部拉引。
2.玻璃带被拉引出锡槽后,经过渡辊合,进入退火窑。
在退火窑内,玻璃带严格按照制定的退火温度曲线进行退火,使玻璃的残余应力控制在要求范围内。
3.出退火窑的玻璃带随即进入冷端,经过切割掰断、加速分离、掰边、纵掰纵分等步骤后,通过斜坡道,并经吹风清扫,然后进入分片线。
4.人工取片装箱包装堆垛成品由叉车送入成品库。
总之,光伏玻璃退火窑是一个复杂的过程,如需了解更多,可以咨询退火窑行业专业人士。
玻璃退火工艺要求及退火窑的基本组成一,玻璃退火的基本原理:当玻璃制品从可塑状态冷却时,表面首先冷却收缩,而内部因尚处于可塑状态,因此质点发生位移,此时并不产生应力,再继续冷却时,内层也受到一定冷却,也开始收缩,但这是外层已经硬化了,此时硬化的外层便阻止内层收缩,因而在表面产生了压应力,而内层本身便受到外展的阻力而产生了张应力,这种应力不因内外层温度梯度的消失而消失,称之为永久应力,存在于玻璃之中。
运用适当的温度制度,连续地把成型后的玻璃带降至室温,使玻璃中应力减小到所允许范围的过程叫玻璃退火。
其退火原理是:把成型后的玻璃带加热到玻璃内部分子可以移动的温度(即退火温度上限),把内存永久应力均化或消除掉。
然后用较慢的冷却速度,使玻璃带通过容易产生永久应力的温度范围(即退火温度上限到退火温度下限)使玻璃带不致重新产生超过允许范围的永久应力,最后以一定的降温梯度,以免产生过大的暂时应力,使玻璃带降至室温。
1.玻璃退火工艺温度制度确立计算方法按规定的退火速度和温度制度对各种成形方法的平板玻璃均有严格要求,从以上有关篇章中,已论述了平板玻璃所要求退火质量标准,但为能保证玻璃的退火质量,特别是具有退火窑的玻璃生产线。
为能保证玻璃的退火质量,除了要控制其的加热速度外,最主要的是要控制玻璃的冷却速度和相应温度,才能达到每一种品种所需的退火质量。
在确定退火速度后,才能在退火窑内的长度中对每一个区域制定所需加热和冷却的温度工艺制度。
如玻璃的退火温度粘度值范围约1013-1014,约为650-4000C。
因此,不管其玻璃的组成和成形方法,按所需的成形方法和相应的玻璃组成计算出相应的在此粘度值下的温度值,再结合现场的实际情况作出相应的条件,制定出合理的工艺温度制度。
1.1根据阿达姆斯公式计算压延玻璃最高退火温度公式T=AX+BY+CZ+D其中:A,B,C,D为常数(查表)X:表示Na2O在玻璃中的百分含量Y:表示CaO+MgO在玻璃中的百分含量Z:表示Al2O3在玻璃中的百分含量注:此公式计算是按玻璃中MgO的含量为3%时的某一粘度值的温度,若玻璃中MgO的含量不是3%时,则需校正当1%的CaO由1%的MgO来替代,粘度为1012Pa.s泊时相应提高的温度校正值为2.5度.上式计算是按玻璃中MgO的含量为3%时的某一粘度值的温度,若玻璃中MgO 的含量不是3%,则需要根据实际成分MgO的含量加以校正.校正值列于下表:根据给定的成分计算与玻璃粘度相应的温度常数玻璃中1% CaO由1%的MgO来代替校正值1.2,常用压延玻璃的工艺参数1.2.1.玻璃化学成分(%)SiO2 Al2O3 CaO MgO Na2O*KaO FeO72.1 1.2 9.3 2.6 14.15 微1.2.2计算:T=AX+BY+CZ+D=(-7.32)×14.15+3.49×(9.3+2.6)+5.37×1.2+603.40=-103.578+41.531+6.444+603.40=547.837=548℃其中 MgO 为2.6 校正数为548℃-2.5×2.6=542℃所以根据计算压延玻璃最高退火温度为548℃2.2退火曲线温度的确定玻璃内应力过多存在主要为玻璃带在退火范围内冷却不当而造成。
玻璃退火工艺一、退火工艺各阶段划分及其影响因素成型结束后的玻璃,其制品内外两部分存在较大的温度差异,该温差将会造成制品存在很大的应力,退火目的就是要消除或减少这些应力到可以允许的限度。
根据消除应力的要求,将玻璃的退火划分为4个阶段:加热阶段、保温阶段、慢冷阶段及快速冷却阶段。
4个阶段分布如图2.14所示。
在玻璃退火工艺上,第Ⅰ,第Ⅱ阶段主要是使玻璃内原有的应力消除或减少到允许的限度;第Ⅲ阶段是确定在这个温度范围内的冷却速率,尽量使冷却过程中造成的内应力降到最低;第Ⅳ阶段是当玻璃内质点的黏性流动已达到最小时,可以加速制品的冷却速率,以所产生的暂时应力不造成制品破裂为限度。
上述4个阶段的划分随玻璃性质、制品厚度、外形尺寸和大小、要求而变化。
图2.14 玻璃退火的各个阶段Ⅰ—加热阶段;Ⅱ—保温阶段;Ⅲ—慢冷阶段;Ⅳ—快冷阶段退火温度和时间的选择,由于受玻璃组成、厚度、造型等因素的影响而有所不同。
影响退火的因素一般有下列3种。
(1)厚度与形状厚壁制品的内外温差较大,在退火温度范围内,厚壁制品的保温时间要相应地延长,以使制品内外层温度趋于一致,因而其冷却速率也必须相应地减慢,故总的退火时间就要延长。
造型复杂的制品应力容易集中,因此它与厚壁制品一样,保温温度应当略低,加热及冷却速率都应较缓慢。
应注意的是,厚壁制品保温时间的延长不是和制品的厚度成正比例增加,这是因厚度增加后荷重较大,若长时间的在较高温度下保温,制品易变形。
其次还经常存在这样的错觉,认为制品愈厚,其退火温度应该愈高,其实退火质量的好坏关键在于慢冷阶段,即应尽量使内应力的存在与再生成能力降低到最低限度。
(2)玻璃组成玻璃的化学组成影响退火温度的选择,凡能降低玻璃黏度的组成也都能降低退火温度。
例如,碱金属氧化物就能显著地降低退火温度,其中以Na2O的作用大于K2O。
SiO2,ZrO2和A12O3等难熔氧化物都会显著地提高退火温度。
(3)不同规格制品若同一退火窑中置有各种不同厚度的制品或同一制品本身的厚度有变化,为避免制品发生变形或退火不完全,应根据最小的厚度来确定退火温度,根据最大的壁厚来确定退火的时间。
在制作供应玻璃微珠时最重要的一点就是玻璃退火,那玻璃退火该注意些什么呢?
玻璃退火,就是把具有永久应力的玻璃制品重新加热到玻璃内部质点可以移动的温度,利用质点的位移使应力分散(称为应力松弛)来消除或减弱永久应力。
应力松弛速度取决于玻璃温度,温度越高,松弛速度越快。
因此,一个合适的退火温度范围,是玻璃获得良好退火质量的关键。
高于退火温度限时,玻璃会软化变形:底于退火所需求温度时,玻璃结构实际上可以认为已固定,内部质点已不能移动,也就无法分散或消除应力。
玻璃在退火温度范围内保温一段时间,以使原有的永久应力消除。
之后要以适当的冷却速度冷却,以保证玻璃中不再产生新的永久应力,如果冷却速度过快,就有重新产生永久应力的可能,这在退火制度中用慢冷阶段保障,慢冷阶段必须持续到最低退火温度以下。
玻璃在退火温度以下冷却时,只会产生暂时应力,以节约时间和减少生产线长度,但也必须控制一定的冷却过快时,可能会使产生的暂时应力大于玻璃本身的极限强度而导致制品爆裂
相关参考资料:/。