16利用三角函数测高
- 格式:ppt
- 大小:817.50 KB
- 文档页数:16
北师大版九年级数学下册:1.6《利用三角函数测高》教学设计一. 教材分析《利用三角函数测高》是北师大版九年级数学下册第1.6节的内容,主要介绍了利用三角函数测量物体高度的方法。
这一节内容是学生在学习了三角函数基础知识后的进一步应用,对于培养学生的实际问题解决能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的三角函数基础知识,能够理解并运用三角函数解决一些实际问题。
但是,对于如何运用三角函数测量物体高度,可能还比较陌生,需要通过实例讲解和操作练习来进一步掌握。
三. 教学目标1.理解利用三角函数测量物体高度的原理和方法。
2.能够运用三角函数解决实际问题,提高学生的应用能力。
3.培养学生的合作意识和解决问题的能力。
四. 教学重难点1.利用三角函数测量物体高度的原理理解。
2.如何根据实际情况选择合适的测量方法和计算公式。
五. 教学方法1.实例讲解:通过具体案例,讲解利用三角函数测量物体高度的方法和步骤。
2.小组讨论:学生分组讨论,总结测量物体高度的原理和注意事项。
3.操作练习:学生分组进行实际操作,巩固所学知识。
4.问题解决:引导学生运用所学知识解决实际问题,提高学生的应用能力。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括知识点、案例、练习题等。
2.测量工具:准备一些测量工具,如测高仪、绳子等,用于实际操作。
3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如测量旗杆高度、树木高度等,引导学生思考如何利用三角函数解决这些问题。
2.呈现(10分钟)通过PPT呈现三角函数测量物体高度的原理和方法,结合具体案例进行讲解,让学生理解并掌握相关知识。
3.操练(10分钟)学生分组进行实际操作,使用测量工具(如测高仪、绳子等)进行测量,巩固所学知识。
教师巡回指导,解答学生在操作过程中遇到的问题。
4.巩固(5分钟)学生分组讨论,总结测量物体高度的原理和注意事项。
1.6 利用三角函数测高1.经历运用仪器进行实地测量以及撰写活动报告的过程,能够对所得到的数据进行分析;(重点)2.能综合应用直角三角形的边角关系的知识解决实际问题.(难点)一、情境导入如图所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?实际上,我们利用图①中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本节要探究的内容.二、合作探究探究点:利用三角函数测高【类型一】测量底部可以到达的物体的高度如图,在一次测量活动中,小华站在离旗杆底部B处6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB 的高度(结果精确到0.1米,3≈1.732).解析:由题意可得四边形BCED是矩形,所以BC=DE,然后在Rt△ACE中,根据tan∠AEC=ACEC,即可求出AC的长.解:∵BD=CE=6m,∠AEC=60°,∴AC=CE·tan60°=6×3≈6×1.732≈10.4(米),∴AB=AC+DE=10.4+1.5=11.9(米).所以,旗杆AB的高度约为11.9米.方法总结:本题借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解题.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】测量底部不可到达的物体的高度如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少厘米(结果精确到0.1cm,参考数据:3≈1.732)?解析:首先过点B作BF⊥CD于点F,作BG⊥AD于点G,进而求出FC的长,再求出BG的长,即可得出答案.解:过点B作BF⊥CD于点F,作BG⊥AD于点G.∴四边形BFDG矩形,∴BG=FD.在Rt△BCF中,∠CBF=30°,∴CF=BC·sin30°=20×12=10(cm).在Rt△ABG 中,∠BAG=60°,∴BG =AB·sin60°=30×32=153(cm).∴CE=CF+FD+DE=10+153+2=12+153≈37.98≈38.0(cm).所以,此时灯罩顶端C到桌面的高度CE约是38.0cm.方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形,转化为解直角三角形问题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】利用三角板测量物体的高度如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离AB是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离CD是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度(参考数据:3≈1.7,结果保留整数).解析:过点A作AE⊥MN于点E,过点C作CF⊥MN于点F,由△AEM是等腰直角三角形得出AE=ME,设AE=ME=x m,根据三角函数列方程求出x的值即可求解.解:过点A作AE⊥MN于点E,过点C 作CF⊥MN于点F,则EF=AB-CD=1.7-1.5=0.2(m),在Rt△AEM中,∵∠AEM =90°,∠MAE=45°,∴AE=ME.设AE =ME=x m,则MF=(x+0.2)m,FC=(28-x)m.在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF·tan∠MCF,∴x+0.2=33(28-x),解得x≈10.1,∴MN=ME+EN=10.1+1.7≈12(米).所以,旗杆MN的高度约为12米.方法总结:解决问题的关键是作出辅助线构造直角三角形,设出未知数列出方程.三、板书设计利用三角函数测高1.测量底部可以到达的物体的高度2.测量底部不可到达的物体的高度3.利用三角板测量物体的高度本节课为了充分发挥学生的主观能动性,学生通过小组讨论,大胆地发表意见,提高了学生学习数学的兴趣.能够使学生自己构造实际问题中的直角三角形,并通过解直角三角形解决实际问题,这本身是一个质的飞跃.在教学过程中,注重引导学生运用方程思想解决实际问题,数学思想方法的渗透使学生的能力发展先于知识能力,从而促进学生知识能力的提高.。
第6节利用三角函数测高1.经历设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程.2.能够对得到的数据进行分析,能够对仪器进行调整和对测量的结果进行矫正,进而得出所要求的结果.3.能够综合运用直角三角形边角关系的知识解决实际问题.让学生经历设计活动方案、自制仪器的过程,通过综合运用直角三角形边角关系的知识,利用数形结合思想解决实际问题,提高学生解决实际问题的能力.通过积极参与数学活动过程,培养学生不怕困难的品质,发展合作意识和科学精神.【重点】综合运用直角三角形边角关系的知识解决实际问题.【难点】设计活动方案、运用仪器的过程及学生学习品质的培养.【教师准备】测倾器、皮尺等测量工具;多媒体课件.【学生准备】复习三角函数的概念和解直角三角形的相关知识.导入一:一天课外活动课,数学兴趣小组的同学想去操场上测量学校旗杆的高度(如图所示).以下是两位同学设计的测量方案:方案1:用皮尺和标杆能测出旗杆的高度.方案2:用皮尺和小平面镜能测出旗杆的高度.【问题】你认为这两位同学提出的方案可行吗?如果是阴天没有太阳光怎么办?[设计意图]通过生活中的实际问题引入课题,使学生认识到数学源于生活,增加学生学习数学的兴趣,并让学生带着问题走进今天的学习.导入二:如图所示展示的是山东省青岛市电视塔夜晚的美丽景色,青岛电视塔坐落于市中心榉林公园内116m高的太平山上.由上海同济大学马人乐先生设计.由于其创意新、选点好、功能布局合理、色调协调及综合规模宏大等,1995年被国务院发展研究中心选入《中华之最大荣誉》,认为是“中国第一钢塔”.某数学兴趣小组的同学想测量该电视塔的高度.【问题】测量电视塔的高度和测量旗杆的高度的方法一样吗?两者有什么区别?[设计意图]通过青岛市电视塔的介绍,既让学生增长了课外知识,又引出了新的疑问——测量方法的区别,激发了学生的学习兴趣,为新知的探究奠定了良好的基础.课件出示:(一)测倾器的认识:如图所示的是一个测倾器的外观图,它是测量倾斜角的仪器.简单的测倾器由度盘、铅锤和支杆组成.【教师活动】制作测倾器时应注意什么?【学生活动】学生观察、交流后得出:支杆的中心线、铅垂线、0°刻度线要重合,否则测出的角度不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0°刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向下.(二)测倾器的使用方法和步骤:【教师活动】用测倾器如何测仰角?【师生活动】学生思考后,师生共同总结:使用测倾器测量倾斜角的步骤如下:1.把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.2.转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.(三)测倾器的运用:课件出示:【做一做】根据刚才测量的数据,你能求出目标M的仰角或俯角吗?说说你的理由.【师生活动】根据操作步骤:当度盘的直径对准目标M时,铅垂线指向一个度数,即∠BOA的度数.根据图形我们不难发现:∵∠BOA+∠NOA=90°,∠MON+∠NOA=90°,∴∠BOA=∠MON.因此读出∠BOA的度数也就读出了仰角∠MON的度数.∴测倾器上铅垂线所示的度数就是物体仰角的度数.【思考】根据上面的做法,如何用测倾器测量一个低处物体的俯角呢?【学生活动】生类比操作:和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.[设计意图]了解测倾器的构造,学习其使用方法.目的是在测量时能正确地使用,特别注意测量【教师提示】所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离.师引导学生观察并思考下面的问题:1.如图所示,要测量物体MN的高度,需测量哪些数据?2.请说出测量物体MN的高度的一般步骤,需要测得的数据用字母表示.【学生活动】学生思考后与同伴交流,统一答案:1.测量A点到物体底部N点的距离AN、测倾器的高度AC的长以及测量仰角∠MCE的度数.2.测量底部可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).【做一做】根据上面测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:在Rt△MCE中,ME=EC·tanα=AN·tanα=l·tanα,∴MN=ME+EN=ME+AC=l·tanα+a.[设计意图]通过小组合作设计方案,培养学生科学的思维方式及归纳总结的能力,并积累“做数学”经验.【活动三】测量底部不可以到达的物体的高度【教师提示】所谓“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.师引导学生观察,小组交流,思考下面的问题:1.要测量物体MN的高度,使用测倾器测一次仰角够吗?2.如图所示,你能类比活动二的方法得出测量底部不可以到达的物体的高度的一般步骤吗?需要测得的数据用字母表示.【师生活动】学生交流后代表发言,师生共同订正:1.要测量物体MN的高度,测一次仰角是不够的.2.测量底部不可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得此时M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测倾器(A,B与N都在同一条直线上),测得此时M的仰角∠MDE=β.(3)量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b.【做一做】根据刚才测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:∵在Rt△MDE中,ED=,在Rt△MCE中,EC=,∴EC-ED=b,∴=b,∴ME=,∴MN=+a.【议一议】同学们知道了底部不可以到达的物体高度的测量方案,利用这种方案你们可以测量哪些物体的高度?【学生活动】生发挥想象力,并分组讨论这些高度的测量方案和计算方法.【议一议】问题(1):到目前为止,有哪些测量物体高度的方法?【师生小结】测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.问题(2):如果一个物体的高度已知或容易测量,那么如何测量某测点到该物体的水平距离?【师生小结】以活动三中的图为例,可以测得M的仰角∠MCE=α,以及测倾器的高AC=a,然后根据AN=EC即可求出测点A到物体MN的水平距离AN.[设计意图]引导学生设计测量底部不可以到达的物体的高度,在交流、展示自己设计的方案的过程中完善方案,判断其可行性,为下面的实际操作做准备,同时培养学生科学、严谨的做事态度.【活动四】设计测量方案,撰写活动报告你能根据我们学过的测量物体高度的方法完成下面的问题吗?课件出示:某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话:小明:我站在此处看树顶仰角为45°.小华:我站在此处看树顶仰角为30°.小明:我们的身高都是1.6m.小华:我们相距20m.请你根据这两位同学的对话,计算这棵汉柏树的高度.(参考数据:≈1.414,≈1.732,结果保留三个有效数字)【教师活动】引导学生判断是测量底部可以到达的物体的高度还是测量底部不可以到达的物体的高度,然后从两名学生的对话中分析得到的信息:∠ABE=30°,∠ACE=45°,ED=1.6m,BC=20m.【师生活动】生独立解答后,同伴交流.代表展示,师生共同订正.解:如图所示,延长BC交DA于E.设AE的长为x m.在Rt△ACE中,∠ACE=45°,∠AEB=90°,则∠CAE=45°,∴CE=AE=x.在Rt△ABE中,∠B=30°,AE=x,tan B=,即tan30°=,∴BE=x.∵BE-CE=BC,BC=20m,∴x-x=20,解得x=10+10,∴AD=AE+DE=10+10+1.6≈28.9(m).答:这棵汉柏树的高度约为28.9m.【学生活动】撰写活动报告.[设计意图]在解决问题的过程中再一次验证测量方案的可行性,巩固新知的同时,利用生活情境设计问题,培养学生的应用意识,提高分析问题、解决问题的能力.1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.1.(2015·长沙中考)如图所示,为测量一棵与地面垂直的树OA的高度,在距离树的底端30m的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.mB.30sinαmC.30tanαmD.30cosαm解析:在Rt△ABO中,∵BO=30m,∠ABO为α,∴AO=BO tanα=30tanα(m).故选C.2.某市进行城区规划,工程师需测某楼AB的高度,工程师在D点用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,则楼AB的高为.解析:在Rt△AFG中,∠AFG=60°,∠AGC=90°,tan∠AFG=,∴FG==.在Rt△ACG中,∠ACG=30°,tan ∠ACG=,∴CG==AG.∵CG-FG=30m,∴AG-=30,解得AG=15,∴AB=(15+2)m.故填(15+2)m.3.在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图所示,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)解:(1)在Rt△ABC中,∠ACB=30°,AB=4,tan∠ACB=,∴AC===4(m).答:AC的距离为4m.(2)在Rt△ADE中,∠ADE=50°,AD=5+4,tan∠ADE=,∴AE=AD·tan∠ADE=(5+4)×tan50°≈14(m).答:塔高AE约为14m.6利用三角函数测高1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.利用三角形相似的知识可以测量物体的高度.3.利用全等三角形的知识也可以测量物体的高度.一、教材作业【必做题】教材第23页习题1.7第1,2题.【选做题】教材第23页习题1.7第3题.二、课后作业【基础巩固】1.已知A,B两点,如果A对B的俯角为α,那么B对A的仰角为()A.αB.90°-αC.90°+αD.180°-α2.如图所示,为了测量电线杆AB的高度,小明将测倾器放在与电线杆的水平距离为9m的D处.若测倾器CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为m(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)3.如图所示,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m.(结果不作近似计算)4.(2014·云南中考)如图所示,小明在M处用高1m(DM=1m)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10m到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.(取≈1.73,结果保留整数)【能力提升】5.(2015·衡阳中考)如图所示,为了测得电视塔的高度AB,在D处用高为1m的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100m达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:m)为()A.50B.51C.50+1D.1016.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图(1)所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山(如图(2)所示)高度的方案:(1)在图(2)中,画出你测量小山高度MN的示意图(标上适当的字母);(2)写出你的设计方案.【拓展探究】7.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3m,台阶AC的坡度为1∶(即AB∶BC=1∶),且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【答案与解析】1.A2.8.1(解析:在Rt△ACE中,AE=CE·tan36°=BD·tan36°=9×tan36°≈6.57,∴AB=AE+EB=AE+CD ≈6.57+1.5≈8.1(m).故填8.1.)3.12(解析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE 中,利用正切函数的知识,求得AB与AE的长,进而可求得答案.)4.解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°-∠BDE=30°=∠BDE,∴BC=CD=10m,在Rt△BCE中,sin 60°=,即=,∴BE=5,AB=BE+AE=5+1≈10(m).答:旗杆AB的高度大约是10m.5.C(解析:设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x.在Rt△ACG中,∵tan∠ACG=,∴CG==x,∵CG-EG=100,∴x-x=100,解得x=50,则AB=50+1(m).故选C.)6.解:(1)画出示意图如图所示.(2)①在测点A处安置测倾器,测得此时M的仰角∠MCE=α.②在测点B处安置测倾器(A,B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β.③量出测倾器的高度AC=BD=h,以及测点A,B之间的距离AB=m.根据上述测量数据,即可求出小山的高度MN.7.解:如图所示,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3.设DE=x,在Rt△CDE 中,∠DCE=60°,∴CE==x.在Rt△ABC中,∵=,AB=3,∴BC=3.在Rt△AFD中,DF=DE-EF=x-3,∠DAF=30°,∴AF==(x-3).∵AF=BE=BC+CE,∴(x-3)=3+x,解得x=9.∴DE=9m.答:树的高度为9m.这节课采用了学生分组活动与全班交流研讨相结合的方法探究测量物体高度的方案,并利用探索出的方案解决生活问题.本节课给了学生足够多的活动空间,通过师生互动、生生互动等活动,让学生积极参与到活动中来,激发学生学习的兴趣,让学生自主探究利用三角函数测高的步骤和方法,并会对测量物体的高度的方案进行设计.让学生用已有的知识解决生活实际问题,体验数学来源于生活,应用于生活,进一步掌握从实际问题到解直角三角形的建模过程.另外,通过小组合作交流形式,让学生积极参与数学活动,对数学产生好奇心,培养学生独立思考问题的习惯,并在数学活动中获得成功的体验,建立自信心.在探究时给学生充分的自主讨论交流时间,导致后面的当堂检测题处理得比较仓促,部分学生接受起来可能有些困难.针对每种测量方案都给出具体的事例让学生去实践,以检验自己所设计方案的可行性.复习题(教材第24页)1.解:(1).(2)0.(3).2.解:(1)0.7841.(2)0.0374.(3)0.7566.3.解:(1)∠A=45°.(2)a=4,∠A=60°.(3)a=b=4.4.sin A=,tan A=.5.(1)∠A≈42°27'15″.(2)∠B≈85°28'29″.(3)∠C≈88°23'28″.6.解:(1)==1.(2)原式=+2×+1-+=++1-+=2.(3)原式=-tan60°=tan60°-1-tan60°=-1.7.解:AC=2,BC=2,sin A=,cos A=.9.解:(1)tan∠ABC=tan∠ADC.(2)tan∠ABC=tan∠ADC.(3)tan∠ABC=·tan∠ADC.10.CD≈5.82m[提示:CD=BD-BC=20tan56°-20tan50°≈5.82(m).]11.船与观测者之间的水平距离约为173.2m.[提示:水平距离=≈173.2(m).]12.解:(1)如图所示,由两直线平行,内错角相等得∠ABD=60°.∵∠CBE=30°,∴∠ABC=90°.∵AB=BC=10km,∴AC==10≈14.1(km).(2)∵AB=BC,∴∠CAB=∠C=45°,∴C港在A港北偏东60°-45°=15°的方向上.13.解:依题意知PQ=180m,∠PTQ=50°,∴∠PQT=40°.∵tan∠PQT=,∴PT=PQ·tan40°≈180×0.839≈151(m).14.解:在Rt△ABC中,AC=6.3,BC=9.8,∴tan B==.∴∠B≈32°44'7″.因此射线与皮肤的夹角为32°44'7″.15.解:(1)在Rt△ACB中,∵AB=4m,∠ABC=60°,cos∠ABC=,∴BC=AB·cos60°=4×=2(m).(2)在Rt △DCE中,∵CD=2.3m,ED=4m,∴sin∠DEC===0.575,∴∠DEC≈35°5'58.68″.16.解:如图所示,在Rt△ACB中,∵AC=30m,∠BAC=30°,tan∠BAC=,∴BC=AC·tan30°=30×=10≈17.3(m).∵CE=AD=40m,∴BE=BC+CE=17.3+40≈57(m),∴乙楼高约57m.17.解:在Rt△BED 中,tan∠BDE =.在Rt△ACB 中,tan∠BAC =.∵∠BDE =30°,∠BAC =60°,DE =AC ,EC =AD =30m ,∴tan 30°=,即BC -30=AC ·tan 30°.又tan 60°=,即BC =AC ·tan 60°,∴AC -30=AC ,∴AC =30,∴AC ==15≈25.98(m ),∴BC ≈25.98×≈45.00(m ).18.解:设渔船到海岛A 的最近距离为x n mile ,由题意得(x -12)=x ,解得x =6>8,所以渔船没有触礁的危险.19.解:过点C 作CF ⊥AB 于F ,则△ADE ∽△ACF ,∴=,即=,∴CF =2.7m .∵BC =2.8m ,∴sin α==≈0.9643,∴α≈74°38'39.14″.20.解:如图所示,连接BD ,过点B 作BE ⊥CD 于E ,过点D 作DF ⊥AB 于F ,在Rt△BEC 中,sin C =,∴BE =BC ·sin 60°=20×=10(m ).在Rt△AFD 中,sin A =,∴DF =AD ·sin 60°=30×=15(m ),∴S 四边形ABCD =S △ABD +S △CBD =AB ·DF +CD ·BE =×50×15+×50×10=625≈1082.53(m 2).21.解:(1)如图所示,过A 作AG ⊥CD 于G ,过E 作EF ⊥CD 于F ,依题意知AB =5m ,BC =30m ,∠DEF =30°,EB =1.4m .在Rt△DFE 中,∵tan∠DEF =,∴DF =BC ·tan30°=30×=10(m ),∴DC =DF +FC =DF +EB =10+1.4≈18.72(m ).(2)∵GC =AB =5m ,∴DG =DC -GC ≈18.72-5=13.72(m ).∵AG =BC =30m ,∴AD =≈≈32.99(m ).22.提示:各边长约为0.34m ,0.34m ,0.66m .23.解:(1)由勾股定理可知OA 1=,OA 2=,OA 3=,…,OA n =.∵tan∠A 0OA 1==,∴∠A 0OA 1=45°.∵tan∠A 1OA 2==,∴∠A 1OA 2≈35°15'51.8″.∵tan ∠A 2OA 3==,∴∠A 2OA 3=30°.(2)∵tan 20°≈0.3640,tan∠A n -1OA n ==<tan 20°,∴>≈2.7473,∴n >7.5477,∴n 的值为8.本节课探究学习的主要任务是掌握利用测倾器测倾斜角和测量物体高度的方法,所以前提条件是要对测倾器有足够的了解,学生在课前可以自己制作一个简单的测倾器,这样就会非常熟悉其操作原理,对于活动一,测量倾斜角就会感觉非常容易;对于活动二、三的探究,分组讨论和全班的交流讨论就显得尤为重要,要积极投身其中,区分测量底部可以到达的物体的高度和底部不可以到达的物体的高度的方法,熟练掌握各种方案的步骤,并利用所学知识解决实际问题,达到学以致用.测量物体的高度时容易漏掉测倾器的高度.李明带领小组成员做了测量电线杆高度的活动,在离电线杆21m 的D 点,用高1.2m 的测角仪CD 测得电线杆顶端A 的仰角α=30°,则电线杆AB 的高为m .【错解】7【错解分析】在利用三角函数计算出AE 的长度后,忽略测倾器的高度,漏加CD ,造成错误.【正解】7+1.2【正解分析】CE =DB =21m ,BE =CD =1.2m .在Rt△ACE 中,∠α=30°,CE =21m ,∴AE =CE ·tan 30°=7(m ),∴AB =AE +BE =(7+1.2)m .(2014·绍兴中考)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图(1)所示,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图(2)所示,第二小组用皮尺量得EF为16m(E为护墙上的端点),EF的中点离地面FB的高度为1.9m,请你求出E点离地面FB的高度.(3)如图(3)所示,第三小组利用第一、第二小组的结果来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4m到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1 m).备用数据:tan60°≈1.732,tan30°≈0.577,≈1.732,≈1.414.〔解析〕(1)根据∠α=2∠CDB即可得出答案.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图所示,根据EH=2MN即可求出E点离地面FB的高度.(3)延长AE,交PB的延长线于点C,设AE=x,则AC=x+3.8,CQ=x-0.2,根据=得出=,求出x即可.解:(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°.(2)设EF的中点为M,如图所示,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥EH,MN=1.9,∴EH=2MN=3.8(m),∴E点离地面FB的高度是3.8m.(3)延长AE,交PB于点C,如图所示,设AE=x,则AC=x+3.8,∵∠APB=45°,∴PC=AC=x+3.8.∵PQ=4,∴CQ=x+3.8-4=x-0.2,∴tan∠AQC==tan60°=,∴=,解得x=≈5.7,∴AE≈5.7m.答:旗杆的高度约是5.7m.[解题策略]此题考查了解直角三角形的应用,用到的知识点是仰角的定义,能作出辅助线并借助仰角构造直角三角形是解本题的关键.。
1.6 利用三角函数测高基础题知识点1 测量底部可以到达的物体的高度1.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为(C)A.30tanα米 B.30sinα米C.30tanα米D.30cosα米2.如图,王师傅在楼顶上A点处测得楼前一棵树CD的顶端C的俯角为60°.若水平距离BD=10 m,楼高AB=24 m,则树CD高约为(C)A.5 mB.6 mC.7 mD.8 m3.如图,从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD 是(A)A.(6+63)米B.(6+33)米C.(6+23)米D.12米4.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12 m的F处,由E点观测到旗杆顶部A的仰角为52°,底部B的仰角为45°,小明的观测点与地面的距离EF为1.6 m,求旗杆AB的高度(结果精确到0.1 m,参考数据2≈1.41,sin52°≈0.79,tan52°≈1.28).解:过点E作EH⊥AC于点H,则EH=FC=12 m,在Rt△AEH中,AH=EH·tan∠AEH=12×1.28=15.36(m).∵∠BEH=45°,∴BH=EH=12 m.∴AB=AH-BH=3.36≈3.4 m.答:旗杆AB的高度约为3.4 m.知识点2 测量底部不可以到达的物体的高度5.如图,在高度是21 m的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD 6.如图所示,河对岸有古塔AB ,小敏在C 处测得塔顶A 的仰角为α,向塔走s 米到达D ,在D 处测得塔顶A 的仰角为β,则塔高是stanαtanβtanβ-tanα米.7.盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D 处用高1.5米的测角仪CD ,测得电视塔顶端A 的仰角为30°,然后向电视塔前进224米到达E 处,又测得电视塔顶端A 的仰角为60°.求电视塔的高度AB(3取1.73,结果精确到0.1米).解:设AG =x.在Rt△AFG 中,∵tan∠AFG=AGFG ,∴FG=x tan60°=x3.在Rt△ACG 中,∵tan∠ACG=AG CG ,∴CG=xtan30°=3x.∴3x -x3=224.解得x≈193.8. ∴AB=193.8+1.5=195.3(米). 答:电视塔的高度AB 约为195.3米. 中档题8.(2019·吉林)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度.数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平解:计算过程:∠ADE=α,DE =BC =a ,BE =CD =b. 在Rt△ADE 中,∠AED=90°. ∵tan∠ADE=AEDE ,∴AE=DE·tan∠ADE. ∴AE=atanα.∴AB=AE +BE =(b +atanα)米.9.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7 m ,看旗杆顶部M 的仰角为45°;小红的眼睛与地面的距离(CD)是1.5 m ,看旗杆顶部M 的仰角为30°.两人相距30米且位于旗杆两侧(点B ,N ,D 在同一条直线上),求旗杆MN 的高度(参考数据:2≈1.4,3≈1.7,结果保留整数).解:过点A 作AE⊥MN,垂足为E ,过点C 作CF⊥MN,垂足为F. 设ME =x ,Rt△AME 中,∠MAE=45°, ∴AE=ME =x.Rt△MCF 中,MF =x +0.2, CF =MF tan30°=3(x +0.2),∵BD=AE +CF , ∴x+3(x +0.2)=30.∴x≈11,即AE =11. ∴MN=11+1.7≈13.答:旗杆MN 的高度约为13米. 综合题10.九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD 斜靠在护墙上,使得DB 与CB 的长度相等,如果测量得到∠CDB =38°,求护墙与地面的倾斜角α的度数;(2)如图2,第二小组用皮尺量得EF 为16米(E 为护墙上的端点),EF 的中点离地面FB 的高度为1.9米,请你求出E 点离地面FB 的高度;(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P 处测得旗杆顶端A 的仰角为45°,向前走4米到达Q 点,测得A 的仰角为60°,求旗杆AE 的高度(精确到0.1米,参考数据:tan60°≈1.732,tan30°≈0.577,3≈1.732,2≈1.414). 解:(1)∵BD=BC ,∴∠CDB=∠DCB. ∴α=2∠CDB=2×38°=76°.(2)设EF 的中点为M ,过点M 作MN⊥BF,垂足为N ,过点E 作EH⊥BF,垂足为H , ∴MN //12EH.又∵MN=1.9, ∴EH=2MN =3.8.答:E 点离地面FB 的高度是3.8米. (3)延长AE 交PB 于点K. 设AE =x ,则AK =x +3.8.∵∠APB=45°,∴PK=AK =x +3.8. ∵PQ=4,∴KQ=x +3.8-4=x -0.2. ∵tan∠AQK=AKQK =tan60°=3,∴x +3.8x -0.2= 3.解得x =3.8+1533-1≈5.7. 答:旗杆AE 的高度约为5.7米.。
北师大版数学九年级下册1.6《利用三角函数测高》教案一. 教材分析《利用三角函数测高》这一节主要让学生了解和掌握利用三角函数测量物体高度的方法。
通过前面的学习,学生已经掌握了锐角三角函数的概念和性质,本节内容是在此基础上进一步应用三角函数解决实际问题。
利用三角函数测高是初中数学中重要的应用题类型,也是中考的热点题型,对于培养学生的数学应用能力和解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经掌握了锐角三角函数的基本概念和性质,对于运用三角函数解决实际问题有一定的基础。
但学生在解决实际问题时,往往因为对实际情况理解不深,而导致解题思路不清晰。
因此,在教学本节内容时,要注重让学生理解实际问题的背景,引导学生运用三角函数解决实际问题。
三. 教学目标1.让学生了解和掌握利用三角函数测高的方法。
2.培养学生运用三角函数解决实际问题的能力。
3.培养学生的合作交流能力和创新思维能力。
四. 教学重难点1.重点:让学生掌握利用三角函数测高的方法。
2.难点:如何引导学生运用三角函数解决实际问题,特别是对于复杂问题的解决。
五. 教学方法采用问题驱动法,情境教学法,合作交流法,引导发现法等。
通过设置具体的问题情境,引导学生运用已学的三角函数知识解决实际问题,培养学生的应用能力和解决实际问题的能力。
六. 教学准备1.准备相关的问题情境和案例,用于引导学生进行实际问题的解决。
2.准备多媒体教学设备,用于展示问题和案例。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的三角函数知识,如:什么是锐角三角函数?它们之间有什么关系?然后提出本节课的主题:如何利用三角函数测高?2.呈现(15分钟)教师通过多媒体展示一些实际问题,如:如何测量电视塔的高度?如何测量树的高度?让学生思考如何利用三角函数解决这些问题。
3.操练(20分钟)教师学生进行小组合作,让学生通过实际操作,运用三角函数解决呈现的问题。
教师巡回指导,解答学生的疑问。
第一章 1.6 利用三角函数测高1.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为米.2. 如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).3.如图,小敏同学想测量一棵大树的高度,她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°.已知小敏同学身高(AB)为1.6m,则这棵树的高度为 m(结果精确到0.1m,3≈1.73)4.如图,已知楼AB高30米,从楼顶A处测得旗杆C的俯角为60°,又从离地面5米的一窗口E处测旗杆顶C的仰角为45°,则旗杆CD的高是米.5.如图,在坡角α为30°的山顶C上有一座电视塔,在山脚A处测得电视塔顶部B 的仰角为45°,斜坡AC的长为400 m,则电视塔BC的高为m.6. 如图,用高为1.5 m的测倾器CD测量一棵大树AB的高,测得B的仰角为α;量出测点C到物体底部A的水平距离为b;则大树的高度为m.7. 如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号).8.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.9. 为了测得河北岸上电线杆MN的高度,在河的这一面电线杆的正南方向A点测量得电线杆顶点M的仰角为α,再在A点的正西方向距A点a m的B处测得A与N之间的水平角为β,则电线杆的高MN为 m.10. 如图,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为( )A .2 3 mB .2 6 mC .(23-2) mD .(26-2) m11.如图,某飞行员于空中A 处探测到地面目标B ,此时从飞机上看目标B 的俯角α=30°,飞机到目标B 的距离AB =2400米,则飞机的高度AC 为( )A .2400米B .1200米C .8003米D .12003米12.如图,两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高为( )A .a 米B .a tan α米 C.a tan β米 D .a(tan β-tan α)米 13.如图所示,高远同学在观景塔AD 的顶端A 点处看到地面上有一条河.于是高远在这条河的两岸各选择一点B 、C ,使得点B 、C 、D 在一条直线上,并用测倾器测得B 、C 两点的俯角分别为30°和60°,已知观景塔AD 的高度是24 m ,则河宽BC 为( )A .8 3 mB .16 mC .16 3 mD .24 m14. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB ′的位置,测得∠PB ′C =α(B ′C 为水平线),测角仪B ′D 的高度为1米,则旗杆PA 的高度为( )A.11-sin α B .11+sin α C.11-cos α D .11+cos α15. 如图,在距离铁轨200米的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是( )A.20(3+1)m/s B.20(3-1)m/s C.200m/s D.300m/s16. 如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)17. 如图,甲、乙两座建筑物的水平距离BC为78 m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).(参考数据:tan48°≈1.11,tan58°≈1.60)18. 如图,一楼房AB后有一假山,其坡度为i=1∶3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)19. 阳光小学升国旗时,王刚同学站在离旗杆底部24m处行注目礼,当国旗升到旗杆顶部时,测得其仰角为30°,若他的双眼离地面1m,则旗杆有多高?20. 某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(如图2).工作时如图3,动臂BC会绕点B转动,当点A、B、C在同一直线时,斗杆顶点D升至最高点(如图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数;(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,3≈1.73)答案:1. 30tan α2. 7tan α3. 5.14. 253-1525. 200(3-1)6. (1.5+btan α)7. (33+9)8. tan α·tan β·s tan β-tan α9. a ·tan α·tan β10. B11. B12. D13. C14. A15. A16. 解:设BD =x 米,则BC =x 米,BE =(x +2)米,在Rt △BDE 中,tan ∠EDB =BE DB =x +2x ,即x +2x ≈1.33,解得x ≈6.06,∵sin ∠EDB =BE ED, 即0.8=8.06ED,解得ED ≈10,即钢线ED 的长度约为10米.17. 解:如图作AE ⊥CD 交CD 的延长线于E ,则四边形ABCE 是矩形,∴AE =BC =78,AB =CE ,在Rt △ACE 中,EC =AE ·tan58°≈125(m),在Rt △AED 中,DE =AE ·tan48°,∴CD =EC -DE =AE ·tan58°-AE ·tan48°=78×1.6-78×1.11≈38(m), 答:甲、乙建筑物的高度AB 为125 m ,DC 为38 m.18. 解:过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H.在Rt △CEF 中,∵i =EF CF =13=tan ∠ECF ,∴∠ECF =30°,∴EF =12CE =10米,CF =103米, ∴BH =EF =10米,HE =BF =BC +CF =(25+103)米.在Rt △AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米,∴AB =AH +HB =(35+103)米.故楼房AB 的高为(35+103)米.19. 解: 如图,过点A 作AE ⊥CD 于点E ,则EC =AB =1m ,AE =BC =24m.在Rt △AED 中,DE =AE ·tan30°=24×33=83(m), ∴DC =DE +EC =(83+1)m.所以,旗杆高度为(83+1)m.20. 解:(1)过点C 作CG ⊥AM 于点G ,如图①,∵AB ⊥AM ,DE ⊥AM ,∴AB ∥CG ∥DE ,∴∠DCG =180°-∠CDE =110°,∴∠BCG =∠BCD -∠GCD =30°,∴∠ABC =180°-∠BCG =150°;(2)当DE 与地面垂直,过点C 作CP ⊥DE 于点P ,过点B 作BQ ⊥DE 于点Q ,交CG 于点N ,如图②,在Rt △CPD 中,DP =CD ×cos70°≈0.51(米),在Rt △BCN 中,CN =BC ×cos30°≈1.04(米),所以,DE =DP +PQ +QE =DP +CN +AB =2.35(米);当D到最高点,如图③,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt △CKD中,DK=CD·sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH -DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.。