第三章 均相酶促反应动力学
- 格式:ppt
- 大小:4.25 MB
- 文档页数:98
酶催化反应动力学解析背景介绍:酶是一种生物催化剂,能够加速化学反应速率。
它们在许多生物体内起着至关重要的作用,包括代谢过程、信号转导、分子识别和DNA复制等。
了解酶催化反应动力学是理解生物学中许多关键过程的关键。
酶动力学:酶催化反应的动力学是关于酶催化反应速率与底物浓度、温度和pH等环境因素之间关系的研究。
通过实验测量酶活性并分析数据可以获得这些关系,这对我们理解和控制酶催化反应至关重要。
酶催化反应速率的表达式:酶催化反应速率可以用麦克斯韦-玛格努斯方程(Michaelis-Menten equation)来表达:v = Vmax * [S] / (Km + [S])其中,v是酶催化反应速率,[S]是底物浓度,Vmax是在无限大底物浓度下酶反应速率的最大值,Km是米氏常数,代表底物浓度为一半时的酶催化反应速率。
米氏常数Km的意义:酶的米氏常数Km反映了底物与酶之间相互作用的亲和力。
Km越小,酶的亲和力越大;Km越大,底物与酶的结合较弱。
Km值对于酶活性的影响非常重要,它决定了在给定底物浓度下酶催化反应速率的快慢。
酶催化反应速率与底物浓度的关系:麦克斯韦-玛格努斯方程中的[S] / (Km + [S]) 这一项表示底物浓度对酶催化速率的贡献。
当底物浓度远小于Km值时,可以简化为[S] / Km,速率与底物浓度成正比,速率随着底物浓度的增加而增加;当底物浓度远大于Km值时,可以简化为1,速率不再受底物浓度的影响。
酶反应速率对底物浓度的响应图像通常符合麦克斯韦-玛格努斯方程预测的双曲线形状。
图像的初始阶段速率随底物浓度线性增加,当底物浓度达到一定程度后,速率趋于平缓。
催化常数kcat:酶的催化常数kcat是与酶催化效率相关的参数。
它表示在单位时间内酶分子催化底物数量的能力。
kcat的大小与酶催化底物的速率相关,kcat越大,酶的催化效率越高。
抑制剂对酶催化动力学的影响:抑制剂是一种可以降低酶催化反应速率的物质。
酶促反应的动力学酶促反应动力学是研究酶促反应速度及其影响因素的科学。
这些因素主要包括底物浓度、酶浓度、温度、PH、激活剂和抑制剂等。
在研究某一因素对酶促反应速度的影响时,应该维持反应中其它因素不变,而只改变要研究的因素。
一、酶与底物浓度在酶的浓度不变的情况下,底物浓度对反应速度影响的作用呈现矩形双曲线(图4-2-1)。
图4-2-1 底物浓度对酶促反应速度的影响在底物浓度很低时,反应速度随底物浓度的增加而急骤加快,两者呈正比关系;当底物浓度较高时,反应速度虽然随着底物浓度的升高而加快,但不再呈正比例加快;当底物浓度增高到一定程度时,如果继续加大底物浓度,反应速度不再增加,说明酶已被底物所饱和。
酶促反应速度与底物浓度之间的变化关系,反映了[ES]的形成与生成产物[P]的过程。
在[S]很低时,酶的活性中心没有全部与底物结合,增加[S],[ES]的形成与[P]的生成均呈正比关系增加;当[S]增高至一定浓度时,酶全部形成了[ES],此时再增加[S]也不会增加[ES],反应速度趋于恒定。
(一)米氏方程为了解释底物浓度与酶促反应速度的关系,1913年Michaelis和Menten把图4-2-1归纳为酶促反应动力学最基本的数学表达式---米氏方程:V=Vmax[S]/(Km+[S])Vmax为反应的最大速度,[S]为底物浓度,Km是米氏常数,V是在某一底物浓度时相应的反应速度。
(二)米氏常数(Km)的意义:1.当反应速度为最大速度一半时,米氏方程可以变换如下:1/2Vmax=Vmax[S]/(Km+[S])所以 Km=[S]。
因此,Km值等于酶促反应最大速度一半时的底物浓度。
2.Km值可判断酶与底物的亲和力(Km值愈大,酶与底物的亲和力愈小;反之亦然)。
3.Km值是酶的特征性常数,只与酶的结构、酶所催化的底物和酶促反应条件有关,与酶的浓度无关。
酶的种类不同,Km值不同,同一种酶与不同底物作用时,Km值也不同。