机器人技术 第四章 动力学分析和力
- 格式:ppt
- 大小:1.40 MB
- 文档页数:37
机器人运动学和动力学分析及控制引言随着科技的不断进步,机器人在工业、医疗、军事等领域发挥着越来越重要的作用。
而机器人的运动学和动力学是支撑其运动和控制的重要理论基础。
本文将围绕机器人运动学和动力学的分析及控制展开讨论,探究其原理与应用。
一、机器人运动学分析1. 关节坐标和笛卡尔坐标系机器人运动学主要涉及的两种坐标系为关节坐标系和笛卡尔坐标系。
关节坐标系描述机器人每个关节的转动,而笛卡尔坐标系则描述机器人末端执行器在三维空间中的位置和姿态。
2. 正运动学和逆运动学正运动学问题是指已知机器人每个关节的位置和姿态,求解机器人末端执行器的位置和姿态。
逆运动学问题则是已知机器人末端执行器的位置和姿态,求解机器人每个关节的位置和姿态。
解决机器人正逆运动学问题对于实现精确控制非常重要。
3. DH参数建模DH参数建模是机器人运动学分析中的重要方法。
它基于丹尼尔贝维特-哈特伯格(Denavit-Hartenberg, DH)方法,将机器人的每个关节看作旋转和平移运动的连续组合。
通过矩阵变换,可以得到机器人各个关节之间的位置和姿态关系。
二、机器人动力学分析1. 动力学基本理论机器人动力学研究的是机器人在力、力矩作用下的运动学规律。
通过牛顿-欧拉方法或拉格朗日方程,可以建立机器人的动力学模型。
动力学模型包括质量、惯性、重力、摩擦等因素的综合考虑,能够描述机器人在力学环境中的行为。
2. 关节力和末端力机器人动力学分析中的重要问题之一是求解机器人各个关节的力。
关节力是指作用在机器人各个关节上的力和力矩,它对于机器人的稳定性和安全性具有重要意义。
另一个重要问题是求解末端执行器的力,这关系到机器人在任务执行过程中是否能够对外界环境施加合适的力。
3. 动力学参数辨识为了建立精确的机器人动力学模型,需要准确测量机器人的动力学参数。
动力学参数包括质量、惯性、摩擦等因素。
动力学参数辨识是通过实验方法,对机器人的动力学参数进行测量和估计的过程。
第!!卷!第"期#$%&!!!’$&"!!!!!平!原!大!学!学!报()*+’,-)./0’12*,’*’0#3+4052!!!!!667年8月!(9:;&!667工业机器人的力学分析姬清华!平原大学机电工程学院"河南新乡<7"66"#!!摘!要!随着机电一体化技术的迅速发展!工业机器人在工业生产中的地位越来越重要!本文从工业机器人的力学分析入手!分别作了静力学和动力学的分析研究!为工业机器人手部及运动各构件提供了力学的分析原理及方法"关键词!工业机器人#静力学#动力学#力矩中图分类号!5/!<!W !!!文献标识码!,!!文章编号!=66>?"@<<!!667#6"?6==8?6!!!收稿日期!!667?6"?6>作者简介!姬清华$=@A 8%&!男!河南新乡人!主要从事机电一体化及数控加工方面的研究"!!随着工业机器人技术的发展"工业机器人的力学分析变得至关重要$工业机器人力学分析主要包括静力学分析和动力学分析"它们是工业机器人操作机设计%控制器设计和动态仿真的基础$P 静力学分析静力学分析是研究操作机在静态工作条件下"手臂的受力情况$P &P 静力平衡方程如图=所示"为开式链手臂中单个杆件的受力情况$杆件)通过关节)和)N =分别与杆件)U =和)N =相连接"以)关节的回转轴线和)N =关节回转轴线为2)U =和2)坐标分别建立两个坐标系)U =和)$令5)U =")表示)U =杆作用在杆上的力"5)")N =表示)杆作用在)N =杆上的力"则U 5)")N =表示)N =杆作用在)杆上的力"*)为)杆的重心"重力<1作用在*)上"于是杆件)的力平衡方程为&5)U =")N 5)N =")N <)1K 6)K ="!"’"#若以5)")N =代替5)N =")"则有&5)U =")U 5)")N=N <)1K 6!=#!!又令;)U =为)U =杆作用于)杆上的力矩"U ;)")N =为)N =杆作用于)杆的力矩"则力矩平衡方程为;)U =")U ;)")N=U !&)")N =N &)"*)#V 5)U =")N !U &)"*)#V U 5)")N =K 6!!)K ="!"’"!!#式中"第三项为5)U =")对重心取矩"第四项为U 5)")N =对重心取矩$若工业机器人操作机由#个杆件构成"则由式图=!杆件的受力分析!=#和式!!#可列出!#个方程"两式共涉及力和力矩!#g !个"因此"一般需结出两个初始条件方程才能有解$在工业机器人作业过程中"最直接受影响的是操作机手部与环境之间的作用力和力矩"故通常假设这两个量为已知"以使方程有解$从施加在操作机手部的力和力矩开始"依次从末杆件到机座求出所施加的力和力矩"将式!=#和式!!#合并并变成从前杆到后杆的递推公式"即5)U =")K 5)")N=U <)1;)U =")K ;)")N =N !&)U =")N &)"*)#V 5)U =")U !&)"*)V 5)")N =#!!)K ="!"’"#P &N 关节力和关节力矩为了使操作机保持静力平衡"需要确定驱动器对相应杆件的输入力和力短与其所引起的操作机(8==( 万方数据手部力和力矩之间的关系!令*)为驱动元件)的第)个驱动器的驱动力或驱动力矩"并假设关节处无摩擦"则有当关节是移动副时"如图!所示"*)应与该关节的作用力5)U =")在2)U =上的分量平衡"即*)K -O)U =5)U=")式中-)U =为)U =关节轴的单位向量!上式表明驱动器的输入力只与5)U =")在2)U =轴上的分量平衡"其他方向的分量由约束力平衡"约束力不作功!当关节是转动副时"*)表示驱动力距"它与作用力矩;)U =")在2)U =轴上的分量相平衡"即*)K -O)U =;)U=")图!!移动关节上的关节力N 动力学分析动力学分析是研究操作机各主动关节驱动力与手臂运动的关系"从而得出工业机器人动力学方程!目前已提出了多种动力学分析方法"这里仅就用牛顿欧拉方程建立工业机器人动力学方程作简要介绍!图"!杆件动力学方程的建立!!动力学方程可以用两个方程表达#一个用以描述质心的移动"另一个描述质心的转动!前者称为牛顿运动方程"后者称为欧拉运动方程!取工业机器人手臂的单个杆件作为自由体"其受力分析如图"所示!图中(*)为杆件)相对于固定坐标系的质心速度"+)为杆件)的转动角速度!因为固定坐标系是惯性参考系"所以将杆件)的惯性力加入到静力学方程式$=%中"于是有牛顿运动方程#5)U =")U 5)")N=N <)1U <)W (*)K 6)K ="!"&"#$"%作用在杆件)上的惯性矩是该杆件的瞬时角动量对时间的变化率!令+)为角速度向量"B )为杆件)质心处的惯量"于是角动量为B )+)!因为惯量随杆件方位的变化而变化"所以角动量对时间的导数不仅包含B )W +)"而且包含因B )的变化而引起的变化+)V B )+)"即陀螺力矩"上述两项加到静力学力矩平衡式$!%中"得;)U =")U ;)")N =N &)"*)V 5)")N =U &)U ="*)V 5)U =")U B W +)U +)V B )+)K 6)K ="!"&"#$<%公式$"%和$<%是单个杆件的动力学特性关系式"若将工业机器人的:个杆件均列出相应的上述两个方程"即得到工业机器人完整的动力学方程组的基本形式#牛顿’欧拉方程!!!参考文献!!="徐元昌#陶学恒&工业机器人!["&北京$中国轻工业出版社#=@@@&!!"陈小川#刘晓冰&虚拟制造体系及其关键技术!("&计算机辅助设计与制造#=@@@#%=6&&!""盛晓敏#邓朝晖&先进制造技术!["&北京$机械工业出版社#!66<&!<"邱士安&机电一体化技术!["&西安$西安电子科技出版社#!66<&【责任编校!李东风】@"@"’-.()(45B %*$’")*(!"U 474#_K +)"2?$,’$C "*0$#)*$+$#DX +"*8&)*$+X #1)""&)#1H "I $&8<"#8’5%)#1.3$#6#)("&7)8."9)#:)$#1"!"#$#<7"66"40)#$%@7(#1’*##_C G BG B ;F E J C II ;T ;%$J M ;:G$O [;H B E G F E :C H D "G B ;F $K $GE J J %C ;IC :C :I 9D G F L BE T ;K ;H $M ;M $F ;E :IM $F ;C M J $FG E :G &5B C D E F G CH %;E :E %L c ;D O F $M M ;H B E :C H D "I C D H 9D D ;D O F $MG B ;D G E G C H D E :II L :E M C H D D ;J E F E G ;%L E :I$O O ;F D G B ;G B ;$F C ;D $O E :E %L c C :Q E F M M $T ;M ;:G E :I H $M J$:;:G $O F $K $G D &A %.:41/(#F $K $G (D G E G C H D (I L :E M C H D (M $T ;M ;:G )A ==) 万方数据工业机器人的力学分析作者:姬清华, JI Qing-hua作者单位:平原大学,机电工程学院,河南,新乡,453003刊名:平原大学学报英文刊名:JOURNAL OF PINGYUAN UNIVERSITY年,卷(期):2005,22(3)被引用次数:2次1.邱士安机电一体化技术 20042.盛晓敏;邓朝晖先进制造技术 20043.陈小川;刘晓冰虚拟制造体系及其关键技术 1999(10)4.徐元昌;陶学恒工业机器人 19991.陈登瑞六自由度机械手本体结构关键技术研究[学位论文]硕士 20062.张烈霞工业机器人运动及仿真研究[学位论文]硕士 2006本文链接:/Periodical_pydxxb200503036.aspx。
机器人运动学与动力学分析及控制研究近年来,机器人技术一直在飞速的发展,机器人的使用越来越广泛,特别是在工业领域。
随着机器人的发展,机器人运动学与动力学分析及控制研究变得越来越重要。
本文将介绍机器人运动学、动力学分析与控制研究的现状以及未来发展趋势。
一、机器人运动学分析机器人运动学分析主要研究机器人的运动学特性,包括机器人的姿态、速度以及加速度等方面。
机器人运动学分析的目的是确定机器人的运动学参数,同时确定机器人工作空间的大小。
机器人运动学分析的方法主要有以下几种:1、直接求解法。
直接求解法是指通过物理意义来推导机器人的运动学方程。
这种方法计算效率较低,但是精度较高。
2、迭代法。
迭代法是通过迭代计算机器人的运动学方程,精度较高,但是计算效率较低。
3、牛顿-拉夫森法。
牛顿-拉夫森法是一种求解非线性方程组的方法,可以用于求解机器人运动学方程。
此方法计算速度比较快,但是相对精度较低。
机器人运动学分析的结果可以用于机器人的路径规划,动力学分析以及控制研究。
二、机器人动力学分析机器人动力学分析主要研究机器人的动力学特性,包括机器人的质量、惯性矩以及外力等方面。
机器人动力学分析的目的是确定机器人的动力学参数,同时确定机器人的力/力矩控制器和位置/速度控制器。
机器人动力学分析的方法主要有以下几种:1、拉格朗日方程法。
拉格朗日方程法是一种描述机器人运动的数学方法,可以用于求解机器人的动力学方程。
此方法计算效率较低,但是精度较高。
2、牛顿-欧拉法。
牛顿-欧拉法是机器人动力学分析中的一种方法,一般用于计算运动学链中的运动学角速度和角加速度,并根据牛顿和欧拉定理将牛顿和欧拉方程转换为轨迹方程。
此方法计算速度较快,但是精度相对较低。
机器人动力学分析的结果可以用于机器人的力/矩控制器的设计,位置/速度控制器的设计以及控制研究。
三、机器人控制研究机器人控制研究主要研究机器人的控制算法,包括力控制算法、位置/速度控制算法、逆动力学算法等方面。
《机器人技术》习题集答案第1章绪论一、选择题(4选1)1—2);2—1);3—3);4—3);5—2)二、判断题(Y/N)1—Y;2—Y;3—Y;4—N;5—N;6—Y;7—Y;8—Y;9—Y;10—Y三、简答题1.机器人学是关于研究、设计、制造和应用机器人的一门科学。
一般包括:机器人结构、机器人坐标系统、机器人运动学、机器人动力学、机器人控制、机器感知、机器视觉、机器人语言、决策与规划等。
相比机器人技术研究的更为概括、抽象和理论一些。
2.一般将机器人分为三代。
* 第一代为示教再现型机器人。
由操作人员预先给出(示教)机器人的运动轨迹,然后机器人准确地重复再现这种轨迹。
* 第二代为感觉判断型机器人,亦称为感知融合智能机器人。
机器人带有一些可感知环境的装置,通过反馈控制,使机器人能在一定程度上适应变化的环境。
* 第三代为自主感知型机器人,亦称为自主感知思维智能机器人。
机器人具有多种感知功能,可进行复杂的逻辑推理、判断及决策,可在作业环境中独立行动;具有发现问题且能自主地解决问题的能力。
3.直角坐标机器人圆柱坐标机器人极坐标机器人多关节型机器人串联关节机器人垂直关节机器人水平关节机器人并联关节机器人串并联关节机器人4.优点:结构最紧凑,灵活性大,占地面积最小,工作空间最大,能与其他机器人协调工作,避障性好缺点:位置精度较低,有平衡问题,控制存在耦合,设计与控制比较复杂5.优点:刚性好,结构稳定,承载能力高,运动精度高缺点:活动空间小。
6.气动机器人液压机器人电动机器人新型驱动方式机器人(如静电驱动器、压电驱动器、形状记忆合金驱动器、人工肌肉及光驱动器等)7.内部传感器是用来检测机器人自身状态(内部信息)的机器人传感器,如检测关节位置、速度的光轴编码器等。
是机器人自身运动与正常工作所必需的;外部传感器是用来感知外部世界、检测作业对象与作业环境状态(外部信息)的机器人传感器。
如视觉、听觉、触觉等。
是适应特定环境,完成特定任务所必需的。
机器人的动力学分析与优化第一章介绍机器人技术的不断发展给人们带来了便利和效率,但机器人的动力学问题一直困扰着研究人员。
动力学问题涉及到机器人的运动、力学和控制方面,为了解决这一难题,科学家们开始对机器人进行动力学分析和优化。
本文将深入探讨机器人的动力学分析与优化技术。
第二章动力学分析机器人的动力学分析是针对机器人系统的力学,通过建立机器人的数学模型,运用牛顿-欧拉法、拉格朗日方程等力学原理进行机器人的运动分析,得到机器人的动力学模型。
根据机器人的运动特征和控制方式,动力学分析一般分为正运动学和逆运动学分析。
正运动学分析是指给定机器人的各关节的位姿参数,得到机器人各个部位的坐标和朝向等位置信息的运动学问题。
逆运动学分析是指根据机器人预期的位姿任务,反向计算出机器人各关节的位姿参数。
动力学分析过程中,需要关注机器人的质量参数和其运动状态的描述参数等,掌握机器人的力学特性,并进行系统的力学分析。
第三章动力学优化动力学优化是对机器人的动态行为进行优化的过程,目的是提高机器人的控制性能、运动精度、效率和稳定性等,可根据机器人的控制目标、任务要求和性能指标等进行动力学优化设计,以满足相应的应用需求。
机器人的动力学优化需要考虑多个方面的因素,例如,助力器件和驱动器件的设计,运动过程中的能量分配和分配过程的最优化等,通过运用数学模型和优化算法,提高机器人的性能指标,实现机器人的最优化设计。
动力学优化设计应当考虑机器人的应用环境、性能需求以及其它相关因素,是机器人发展的重要研究方向。
第四章动力学应用机器人动力学分析及优化可应用于各种机器人系统,包括普通工业机器人、协作机器人、服务机器人、医疗机器人等。
在工业生产和生活领域,这些机器人的应用越来越普遍,优化机器人的动力学参数,有助于提高其有效性和合理性。
以智能家居为例,机器人通过高精度的动力学分析,掌握家居环境的信息,通过优化设计,提高其移动速度、精确性和准确度,以满足更多家庭环境的需求。
机器人运动学与动力学建模分析机器人运动学和动力学建模是研究机器人行为和运动规律的重要领域。
运动学主要关注机器人的位置、速度和加速度等几何特性,而动力学则研究机器人运动背后的力学原理。
在这篇文章中,我们将介绍机器人运动学和动力学建模的基本概念和方法,并通过实例分析来加深理解。
一、机器人运动学建模机器人运动学建模是描述机器人位置和运动规律的数学模型。
在机器人控制中,运动学模型非常重要,它可以帮助我们预测机器人的运动轨迹、速度和加速度等信息。
常用的机器人运动学模型包括点式机器人和刚体机器人模型。
1. 点式机器人模型点式机器人模型是最简单的机器人模型。
它假设机器人是一个质点,没有具体的形态和刚性要求。
我们可以用一个坐标系表示机器人的位置,通过几何变换和向量运算来描述机器人的运动。
点式机器人模型常用于描述移动车辆等简单机器人。
2. 刚体机器人模型刚体机器人模型是对真实机器人的更为精确的描述。
它考虑了机器人的形态和刚性特性,并用连续的链接和关节来模拟机器人的结构。
刚体机器人模型可以通过关节角度和链接长度来推导机器人的位置和姿态变换。
常见的刚体机器人模型包括直线型机器人和旋转型机器人等。
二、机器人动力学建模机器人动力学建模是研究机器人运动背后力学原理的数学模型。
它描述了机器人在受到力和扭矩作用下的运动规律。
机器人动力学建模可以帮助我们了解机器人运动的原因和机理,为机器人控制和优化提供重要参考。
1. 基本原理机器人动力学建模基于牛顿第二定律,将机器人的质量、惯性、外力和关节扭矩等因素考虑在内。
通过建立动力学方程,我们可以推导出机器人在不同状态下的运动方程,并对机器人的运动进行预测和分析。
动力学建模涉及到力、力矩、加速度等物理量的计算和描述,需要运用向量和矩阵运算等数学工具。
2. 模型分析与仿真机器人动力学建模不仅可以推导出机器人的运动方程,还可以通过数值仿真和模拟来对机器人的运动进行分析和验证。
利用计算机软件和数值计算方法,我们可以模拟不同环境和力量条件下,机器人的运动轨迹和力学特性。