三峡升船机知识简介
- 格式:ppt
- 大小:12.43 MB
- 文档页数:3
船闸及升船机基本知识一、船闸及升船机分级与分类(一)船闸的分级与分类船闸按设计最大船舶吨级分为7级,其分级指标见表1-2-1。
随着航运业发展,目前许多船闸通过的最大船舶吨级已远超过3000t,这些通航3000t级以上船舶的船闸列入Ⅰ级船闸。
表1-2-1 船闸分级指标闸室数目、并列排列船闸数目、输水型式、结构型式、闸门型式、使用特点等,可以分为不同的类型。
现通常分类如下:1.按船闸所处的地理位置和过闸船舶不同划分(1)内河船闸内河船闸是指建于内陆的渠化河流或人工运河上的船闸,通行内河船舶。
船闸平面尺寸相对较小,多承受单向水头作用,上闸首常设有帷墙。
少数建于两条河流交汇的河口处及受潮水位或湖水位影响河段上的内河船闸,也承受双向水头作用,且不设帷墙。
建于山区河流上的溢洪船闸,洪水时允许淹没,并参与枢纽泄洪。
(2)海船闸海船闸是指建于封闭式海港池口门,海运河及入海河口的船闸,供海船航行。
船闸平面尺寸及门槛水深均较大,多承受双向水头作用,无帷墙。
因上、下闸首难以区分,故将闸首分为内闸首和外闸首。
2.按纵向排列闸室数目划分(1)单级船闸单级船闸是指沿船闸轴线方向只有一个闸室的船闸。
船舶通过单级船闸时,只需进行一次充泄水即可克服上下游水位的全部落差。
单级船闸具有过闸时间短,通过能力大,建筑物及设备集中,运行管理方便等特点。
但其耗水多,结构复杂,对地质条件、输水系统要求高。
单级船闸一般只有两个闸首,当过闸船队种类较多、尺度又相差较大时,为缩短船舶(队)过闸时间和减少耗水量,在闸室中设中间闸首,将闸室分为两段,称为有中间闸首的单级船闸。
(2)多级船闸多级船闸又可分上下级闸室相连和设中间渠道的两种:a)上下级闸室相连的连续多级船闸。
系指沿船闸纵向连续建有两个或两个以上闸室的船闸。
船舶通过此种船闸时,需进行多次充泄水才能克服上下游水位的全部落差,位于上下闸室间的中间闸首,对其上闸室来说,实际上是起下闸首的作用,而对其下闸室来说,却相当于上闸首。
船闸及升船机基本知识一、船闸及升船机分级与分类(一)船闸的分级与分类船闸按设计最大船舶吨级分为7级,其分级指标见表1-2-1。
随着航运业发展,目前许多船闸通过的最大船舶吨级已远超过3000t,这些通航3000t级以上船舶的船闸列入Ⅰ级船闸。
表1-2-1 船闸分级指标闸室数目、并列排列船闸数目、输水型式、结构型式、闸门型式、使用特点等,可以分为不同的类型。
现通常分类如下:1.按船闸所处的地理位置和过闸船舶不同划分(1)内河船闸内河船闸是指建于内陆的渠化河流或人工运河上的船闸,通行内河船舶。
船闸平面尺寸相对较小,多承受单向水头作用,上闸首常设有帷墙。
少数建于两条河流交汇的河口处及受潮水位或湖水位影响河段上的内河船闸,也承受双向水头作用,且不设帷墙。
建于山区河流上的溢洪船闸,洪水时允许淹没,并参与枢纽泄洪。
(2)海船闸海船闸是指建于封闭式海港池口门,海运河及入海河口的船闸,供海船航行。
船闸平面尺寸及门槛水深均较大,多承受双向水头作用,无帷墙。
因上、下闸首难以区分,故将闸首分为内闸首和外闸首。
2.按纵向排列闸室数目划分(1)单级船闸单级船闸是指沿船闸轴线方向只有一个闸室的船闸。
船舶通过单级船闸时,只需进行一次充泄水即可克服上下游水位的全部落差。
单级船闸具有过闸时间短,通过能力大,建筑物及设备集中,运行管理方便等特点。
但其耗水多,结构复杂,对地质条件、输水系统要求高。
单级船闸一般只有两个闸首,当过闸船队种类较多、尺度又相差较大时,为缩短船舶(队)过闸时间和减少耗水量,在闸室中设中间闸首,将闸室分为两段,称为有中间闸首的单级船闸。
(2)多级船闸多级船闸又可分上下级闸室相连和设中间渠道的两种:a)上下级闸室相连的连续多级船闸。
系指沿船闸纵向连续建有两个或两个以上闸室的船闸。
船舶通过此种船闸时,需进行多次充泄水才能克服上下游水位的全部落差,位于上下闸室间的中间闸首,对其上闸室来说,实际上是起下闸首的作用,而对其下闸室来说,却相当于上闸首。
三峡升船机电气控制系统介绍作者:屈斌来源:《中国水运》2015年第02期摘 要:作为目前世界上提升高度最大的升船机,三峡升船机具有建设规模大、技术难度高、运行控制复杂特点。
为确保三峡升船机的安全运行,三峡升船机采用先进计算机监控系统并配以各种先进的传感器实现三峡升船机的自动控制。
本文介绍了三峡升船机电气控制系统。
关键词:升船机 电气控制系统 传感器三峡水利枢纽主要由挡水和泄水建筑物、发电建筑物以及通航建筑物组成。
通航建筑物有双线五级船闸和一级垂直升船机。
三峡升船机采用齿轮齿条爬升式垂直升船机,过船规模3000t,最大提升高度113m,上游通航水位变幅30m,下游通航水位变幅11.8m。
布置在三峡枢纽左岸,位于双线五级船闸右侧、左岸7#、8#非溢流坝段之间,是船舶快速过坝通道,由上游引航道、上闸首、船厢室段、下闸首和下游引航道等部分组成。
三峡升船机电气控制系统主要由供配电系统、计算机监控系统、电气传动控制系统、检测系统、图像监控系统、通航信号及广播系统设备等组成。
三峡升船机供配电系统三峡升船机供配电系统设备由供配电工作站、塔柱供配电系统、船厢供配电系统等组成。
供配电工作站由1台工作站、1套变电控制站组成,塔柱供配电系统由2套10kV供配电系统、2套0.4kV供配电系统、1套直流电源、1套EPS电源组成。
船厢供配电系统由4套10kV 供配电系统组成、4套船厢0.4kV供配电系统、1套低压开关装置等组成。
塔柱10kV供配电系统、0.4kV供配电系统、直流电源、EPS电源布置在塔柱+196.00m高程北侧、南侧。
船厢10kV供配电系统、0.4kV供配电系统、低压开关装置分别布置在船厢1.1、2.1、3.1、4.1电气室。
三峡升船机供配电系统采用三回独立的10kV电源供电,一回引自左岸电厂,另两回引自坛子岭变电站。
三峡升船机供配电系统设备负责升船机上闸首工作门桥机及辅助门桥机、上/下闸首工作门、上/下厢头工作门、上/下闸首启闭机房、泄水工作阀门、集中控制室、船厢驱动机构、工作/安全制动器、充泄水系统、检测系统、消防系统、空调系统、照明系统、1-6#电梯等设备供电。
船闸及升船机基本知识一、船闸及升船机分级与分类(一)船闸的分级与分类船闸按设计最大船舶吨级分为7级,其分级指标见表1-2-1。
随着航运业发展,目前许多船闸通过的最大船舶吨级已远超过3000t,这些通航3000t级以上船舶的船闸列入Ⅰ级船闸。
表1-2-1 船闸分级指标闸室数目、并列排列船闸数目、输水型式、结构型式、闸门型式、使用特点等,可以分为不同的类型。
现通常分类如下:1.按船闸所处的地理位置和过闸船舶不同划分(1)内河船闸内河船闸是指建于内陆的渠化河流或人工运河上的船闸,通行内河船舶。
船闸平面尺寸相对较小,多承受单向水头作用,上闸首常设有帷墙。
少数建于两条河流交汇的河口处及受潮水位或湖水位影响河段上的内河船闸,也承受双向水头作用,且不设帷墙。
建于山区河流上的溢洪船闸,洪水时允许淹没,并参与枢纽泄洪。
(2)海船闸海船闸是指建于封闭式海港池口门,海运河及入海河口的船闸,供海船航行。
船闸平面尺寸及门槛水深均较大,多承受双向水头作用,无帷墙。
因上、下闸首难以区分,故将闸首分为内闸首和外闸首。
2.按纵向排列闸室数目划分(1)单级船闸单级船闸是指沿船闸轴线方向只有一个闸室的船闸。
船舶通过单级船闸时,只需进行一次充泄水即可克服上下游水位的全部落差。
单级船闸具有过闸时间短,通过能力大,建筑物及设备集中,运行管理方便等特点。
但其耗水多,结构复杂,对地质条件、输水系统要求高。
单级船闸一般只有两个闸首,当过闸船队种类较多、尺度又相差较大时,为缩短船舶(队)过闸时间和减少耗水量,在闸室中设中间闸首,将闸室分为两段,称为有中间闸首的单级船闸。
(2)多级船闸多级船闸又可分上下级闸室相连和设中间渠道的两种:a)上下级闸室相连的连续多级船闸。
系指沿船闸纵向连续建有两个或两个以上闸室的船闸。
船舶通过此种船闸时,需进行多次充泄水才能克服上下游水位的全部落差,位于上下闸室间的中间闸首,对其上闸室来说,实际上是起下闸首的作用,而对其下闸室来说,却相当于上闸首。
影响三峡升船机锁定机构性能的原因分析与应对措施1. 引言1.1 背景介绍三峡升船机是世界上最大的斜升梯船机,其主要功能是通过提升船只,使船只通过三峡大坝,实现水位不同的两侧的高差。
在升船机的运行过程中,锁定机构是至关重要的一部分,它能够确保船只在升降过程中的安全。
长期运行和磨损使得锁定机构性能逐渐下降,可能会造成严重的安全隐患。
研究三峡升船机锁定机构性能的影响因素以及相应的应对措施显得尤为重要。
在实际运行中,锁定机构性能的影响因素主要包括机械磨损、材料失效和运行维护不到位等,这些因素会直接影响锁定机构的可靠性和安全性。
通过深入分析这些因素,寻找解决问题的方法,对提升三峡升船机的运行效率和安全性具有重要意义。
在本文中,我们将对影响三峡升船机锁定机构性能的这些因素进行详细分析,并提出相应的应对措施,希望能为三峡升船机的运行提供参考和帮助。
1.2 研究目的三峡升船机是中国著名的水利工程之一,起着重要的船舶升降和过闸运输的作用。
随着升船机运行时间的增长,锁定机构性能可能会受到影响,从而影响升船机的安全性和稳定性。
本研究旨在分析影响三峡升船机锁定机构性能的因素,深入探讨其中的机械磨损、材料失效和运行维护不到位等问题,以期找出最主要的影响因素,并提出相应的应对措施,保障升船机的正常运行。
通过本研究,我们希望能为提升三峡升船机的运行效率和安全性提供参考,为未来的相关研究工作奠定基础。
2. 正文2.1 锁定机构性能的影响因素分析锁定机构性能的影响因素分析主要包括机械磨损、材料失效和运行维护不到位三个方面。
机械磨损是造成锁定机构性能下降的主要原因之一。
长期运行中,机械零部件之间的摩擦会导致零部件表面磨损,从而降低锁定机构的工作效率和稳定性。
材料失效也会影响锁定机构的性能。
如果使用的材料质量不合格或者在制造加工过程中存在缺陷,可能会导致锁定机构的零部件易损耗、开裂或断裂,进而影响锁定机构的正常工作。
运行维护不到位也是影响锁定机构性能的重要原因之一。